Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMB và ΔAMC có
AB=AC(gt)
MB=MC(M là trung điểm của BC)
AM chung
Do đó: ΔAMB=ΔAMC(c-c-c)
b) Sửa đề: AM=MD
Xét ΔAMC và ΔDMB có
AM=DM(gt)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔAMC=ΔDMB(c-g-c)
⇒AC=DB(Hai cạnh tương ứng)
c) Ta có: ΔAMC=ΔDMB(cmt)
nên \(\widehat{ACM}=\widehat{DBM}\)(hai góc tương ứng)
mà \(\widehat{ACM}\) và \(\widehat{DBM}\) là hai góc ở vị trí so le trong
nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)
A B C M I K D
a,
Xét hai tam giác AMC và tam giác DMB, ta có:
- MB = MC [M là trung điểm AB]
- \(\widehat{BMD}=\widehat{AMC}\left[gt\right]\)
- MA = MD [gt]
=> \(\Delta AMC=\Delta DMB\left[c-g-c\right]\)
=> AC = BD
b,
Vì \(\Delta AMC=\Delta DMB\left[cmt\right]\)
=> \(\widehat{ACM}=\widehat{DBM}\)
Mà hai góc này ở vị trí so le trong bằng nhau
=> AC//BD
c,
Ta có:
AC = BD [cmt]
Mà KD = AI [gt]
=> IC = BK
Xét hai tam giác BMK và tam giác CMI, ta có:
- MB = MC [gt]
- \(\widehat{ACM}=\widehat{DBM}\)[cmt]
- IC = BK [cmt]
=> tam giác BMK = tam giác CMI [c-g-c]
Lại có:
\(\Delta ACM\) = \(\Delta BMD\)
Mà \(\Delta BMK=\Delta CMI\left[cmt\right]\)
=> tam giác IMA = tam giác DMK
=> góc KMD = góc IMA
Mà góc AMD = góc AMK + góc KMD = 180o
góc KMI = góc AMK + góc IMA
Mà góc KMD = góc IMA [cmt]
=> KMI = 180o
Vậy ba điểm I,M,K thẳng hàng
AAI ĐI NGANG QUA ỦNG HỘ NHÉ
a) Sửa đề: ΔAMB=ΔDMC
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
a: Xét ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đo ΔMAB=ΔMDC
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
c: Xét ΔAHB vuông tại H và ΔDKC vuông tại K có
AB=DC
góc ABH=góc DCK
Do đo: ΔAHB=ΔDKC
=>AH=DK và BK=CH
A B C M E
a) CMR AC // BE
xét tam giacs AMC và tam giác EMB
có AM = ME (gt)
BM = MC (M trung điểm BC)
\(\widehat{AMC}=\widehat{EMB}\left(dd\right)\)
=> tam giác AMC = tam giác EMB (cgc)
=> \(\widehat{MBE}=\widehat{MCB}\)mà chúng ở vị trí so le trong => AC//BE
b) bạn tự thêm điểm I và K vào hình vẽ nhé, mình lười :))
ta có I thuộc AC, K thuộc BE nên
IC = AC - AI và BK = BE - KE
mà AC = BE (cmt), AI = KE (gt)
=> IC = BK
xét tam giác IMC và tam giác KMB
có: BK = IC (cmt)
BM = MC (cmt)
góc MBK = góc ICM (AC//BE)
=> tam giác IMC = tam giác KMB (cgc)
=> góc IMC = góc KMB
khi đó góc IMK = 180 độ
I, M, K thẳng hàng
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
c: Xét ΔIAM và ΔKDM có
IA=KD
\(\widehat{IAM}=\widehat{KDM}\)
AM=DM
Do đó: ΔIAM=ΔKDM
=>\(\widehat{IMA}=\widehat{KMD}\)
mà \(\widehat{IMA}+\widehat{IMD}=180^0\)(hai góc kề bù)
nên \(\widehat{KMD}+\widehat{IMD}=180^0\)
=>K,M,I thẳng hàng