Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai
a) Ta có BM = CN và I là trung điểm của BC, K là trung điểm của MN. Vậy ta có BI = CK và IM = KN.
Do đó, ta có:
IK = IM + MK = KN + MK = KM
Vậy tam giác IKQ có hai cạnh bằng nhau là IK = KQ. Do đó, tam giác IKQ là tam giác cân.
b) Ta có BI = CK và IM = KN (vì I, K lần lượt là trung điểm của BC, MN).
Giả sử giao điểm của IK và AB là D, giao điểm của IK và AC là E.
Ta có:
BD = DC (vì I là trung điểm của BC)
IM = KN (vì K là trung điểm của MN)
Do đó, theo nguyên lý đồng dạng tam giác, ta có:
∠IDB = ∠EDC (cùng là góc nội tiếp cùng cung BD)
∠IMK = ∠KNQ (cùng là góc nội tiếp cùng cung MK)
Vậy ta có:
∠IDB = ∠EDC
∠IMK = ∠KNQ
Từ đó suy ra:
∠IDB + ∠IMK = ∠EDC + ∠KNQ
Nhưng ta cũng biết rằng:
∠IDB + ∠IMK = ∠BID
∠EDC + ∠KNQ = ∠CED
Vậy ∠BID = ∠CED, tức là góc tạo bởi IK và các đường thẳng AB, AC là bằng nhau.
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
Lời giải:
Áp dụng định lý Menelaus cho tam giác $ABN$ và 3 điểm $E,I,M$ thẳng hàng thì:
$\frac{EA}{EB}.\frac{IB}{IN}.\frac{MN}{MA}=1$
$\Leftrightarrow \frac{EA}{EB}.\frac{MN}{MA}=1$
$\Leftrightarrow \frac{EA}{EB}=\frac{MA}{MN}(1)$
Tương tự với tam giác $ACN$ với $F, K,M$ thẳng hàng:
$\frac{FA}{FC}=\frac{MA}{MN}(2)$
Từ $(1); (2)\Rightarrow \frac{EA}{EB}=\frac{FA}{FC}$
Theo định lý Talet đảo thì $EF\parallel BC$ (đpcm)