Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M H N K
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
AB = AC (\(\Delta ABC\) cân tại A)
AM chung
BM = CM (suy từ gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
hay \(\widehat{HBM}=\widehat{KCM}\)
Xét \(\Delta HBM\) vuông tại H và \(\Delta KCM\) vuông tại K có;
BM = CM
\(\widehat{HBM}=\widehat{KCM}\) (c/m trên)
\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)
c) Ta có: \(BM=CM=\dfrac{1}{2}BC\) (M là tđ)
\(\Rightarrow BM=CM=\dfrac{1}{2}.16=8\)
Vì \(\Delta ABM=\Delta ACM\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) = \(90^o\)
\(\Rightarrow\Delta ABM\) vuông tại M
Áp dụng định lý pytago vào \(\Delta ABM\) vuông tại M có:
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AM^2=17^2-8^2\)
\(\Rightarrow AM^2=15^2\)
\(\Rightarrow AM=15\)
Lại có: \(AN=NM=\dfrac{1}{2}AM=\dfrac{1}{2}.15=7,5\)
Vậy \(S_{\Delta BNC}=\dfrac{NM.BC}{2}=\dfrac{7,5.16}{2}=60\) \(\left(cm^2\right)\).
B A C M K H G I
a) Xét hai tam giác MHB và MKC có:
MB = MC (gt)
Góc HMB = góc KMC (đối đỉnh)
MH = MK (gt)
Vậy: tam giác MHB = tam giác MKC (c - g - c)
c) Ta có: AM = MB = MC = \(\dfrac{1}{2}\) BC (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
=> Tam giác MAB cân tại M
=> MH là đường cao đồng thời là đường trung tuyến
hay HB = HA
=> CH là đường trung tuyến ứng với cạnh AB
Hai đường trung tuyến AM và CH cắt nhau tại G
=> G là trọng tâm của tam giác ABC
Mà BI đi qua trọng tâm G (G thuộc BI)
Do đó BI là đường trung tuyến còn lại
hay I là trung điểm của AC (đpcm).
A B C N M
a, Xét ΔABM và ΔACM ,có :
AB = AC ( gt )
AM : cạnh chung
BM = CM ( gt )
\(\Rightarrow\) ΔABM = ΔACM ( c.c.c )
b, AB = AC
\(\Rightarrow\Delta ABC\) cân tại A
\(\Rightarrow\) AN là đường trung tuyến đồng thời là đường cao của ΔABC
Hay AN là phân giác của \(\widehat{BAC}\)
c, Ta có :MB = MC
\(\Rightarrow\) ΔMBC cân tại M
=> MN là đường tủng tuyến đồng thời là đường cao của ΔMBC
\(\Rightarrow MN\perp BC\) (1)
ΔABC cân tại A
=> AN là đường phân giác đồng thời là đường cao
\(\Rightarrow AN\perp BC\) (2)
Từ (1)(2) => A, M , N thẳng hàng
A.xét ∆ACM và ∆ECM có
MA=ME(gt)
MC chung
AMC=EMC(2góc kề bù)
=>∆AMC=∆EMC(c.g.c)
=>AC=CE(2cạnh tương ứng)
*AC//BE
Xét ∆ACM và∆EBM
MA=ME(gt)
BM=CM(vì M là trung điểm)
AMC=EMB(2góc đối đỉnh)
=>∆AMC=∆EMB(c.g.c)
=>ACM=EBM(2góc tương ứng)
Mà hai góc ở vị trí so le trong
=>AC//BE
Câu hỏi b và c chưa rõ đề bài.
Điểm H ở đâu vậy bạn?