Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Xét ΔABM và ΔMCE: AM=ME
\(\widehat{AMB}=\widehat{CME}\)
BM=MC
⇒ ΔABM = ΔMCE (c.g.c)
⇒ CE=AB ( 2 cạnh tương ứng)
⇒ \(\widehat{BAM}=\widehat{CEM}\)( 2 góc tương ứng)
Vì AB<AC
⇒ CE<AC
Xét ΔACE có: CE< AC
⇒ \(\widehat{MAC}= \widehat{CEM}\)
mà \(\widehat{BAM}=\widehat{CEM}\) (cmtrn)
⇒ \(\widehat{BAM}=\widehat{MAC}\) (đpcm)
a, theo pytago ta có:
AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)
so sánh: BAC>ABC>ACB vì BC>AC>AB
b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC
mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC
=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C
câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé
tham khảo .mình giải rất chi tiết
Huy Hoang tự vẽ hình nhé!
\(a,\) Xét \(\Delta MAC\) và \(\Delta MDC\) ta có:
+) \(MB=MC\) (AM là trung tuyến nên M là trung điểm của BC)
+) \(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
+) \(MA=MB\left(gt\right)\)
\(\Rightarrow\Delta MAC=MDC\Rightarrow\widehat{BAM}=\widehat{CDM}\) Và \(CD=AB< AC\)
Trong \(\Delta ADC:AC< CD\Rightarrow\widehat{ADC}>\widehat{DAC}\left(dpcm1\right)\)
Vì \(\widehat{MAB}=\widehat{MDC}\Rightarrow\widehat{MAB}=\widehat{ADC}>\widehat{MAC}\)
\(\Rightarrow MAB>MAC\)
b, AH vuông với BC tại H
=> H là hình chiếu của A trên BC
HB là đường chiếu tương ứng của đường xiên AB
HC là đường chiếu tương ứng của đường xiên AC
Mà \(AB< AC\Rightarrow HB< HC\left(dpcm3\right)\)
Mặt khác E thuộc AH => HB cũng là đường chiếu của đường xiên EB
HC là hình chiếu của đường xiên EC
Mà \(HB< HC\left(theodpcm3\right)\)
\(\Rightarrow EC< EB\left(dpcm4\right)\)
\(\)
a) Vì BA=BA ( GT )
\(\Rightarrow\Delta BAD\) cân tại B ( đn)
\(\Rightarrow\widehat{BAD}=\widehat{BDA}\)( tính chất ) (4)
b) Vì tam giác HAD vuông tại H \(\Rightarrow\widehat{HAD}+\widehat{D1}=90^0\)( phụ nhau ) (1)
Ta có: \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}=90^0\)( h.vẽ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{HAD}+\widehat{BDA}=\widehat{DAC}+\widehat{DAB}\)( 3)
Từ (3) và (4) \(\Rightarrow\widehat{HAD}=\widehat{CAD}\)mà AD nằm giữa 2 tia AH và AC ( c.ve)
\(\Rightarrow AD\)là phân giác của góc HAC.
c) Xét \(\Delta HAD\)và \(\Delta CAD\)có:
\(\hept{\begin{cases}\widehat{AHD}=\widehat{ACD}=90^0\\ADchung\\\widehat{HAD}=\widehat{CAD}\left(cmt\right)\end{cases}\Rightarrow\Delta HAD=\Delta CAD\left(ch-gn\right)}\)
\(\Rightarrow\hept{\begin{cases}HD=CD\left(2canhtuongung\right)\\AH=AK\left(2canhtuongung\right)\end{cases}}\)
Xét tam giác DHC có HD=CD ( cmt)
\(\Rightarrow\Delta DHC\)cân tại D
\(\Rightarrow\widehat{DHC}=\widehat{DCH}\left(tc\right)\) (5)
Ta có: \(\widehat{H1}+\widehat{DHC}=\widehat{AHD}=90^0\) (6)
\(\widehat{K1}+\widehat{DCH}=\widehat{AKD}=90^0\)(7)
Từ (5) , (6) và (7) \(\Rightarrow\widehat{H1}=\widehat{K1}\)
\(\Rightarrow\Delta AHK\)cân tại A.
d) Xét tam giác DKC vuông tại K nên \(DC>KC\)( tính chất )
\(\Rightarrow DC+AK>KC+AK\)
mà AH=AK ( cmt)
\(\Rightarrow DC+AH>KC+AK\)
\(\Rightarrow DC+AH+BD>KC+AK+BD\)
mà AB=BD ( cmt)
\(\Rightarrow AK+KC+AB< DC+BD+AH\)
\(\Rightarrow AB+AC< BC+AH\left(đpcm\right)\)
( p/s: Đánh giấu cho tôi kí hiệu góc H1 và K1 nhé chắc bạn biết mà )
khó thế
có