Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
hay \(\widehat{AMB}=90^0\)
\(\Delta ABC\) có \(AB=BC\left(gt\right)\) nên là tam giác cân
\(\Rightarrow ABC=ACB=\frac{180-A}{2}=\frac{180-40^o}{2}=70^o\)
\(AM\) là đường trung tuyến của tam giác cân đó ( vì \(MB=MC\) )
\(\Delta ABC\) cân tại \(A\)có \(AM\)l là đường trung tuyến nên cũng là đường cao và đường phân giác
\(\Rightarrow\)Góc \(AMB=\) góc\(AMC=90^o\) và góc \(BAM=CAM=\frac{A}{2}=\frac{40^o}{2}=20^o\)
\(\widehat{ABM}=\widehat{ACM}=\dfrac{180^0-40^0}{2}=70^0\)
\(\widehat{BAM}=\widehat{CAM}=\dfrac{40^0}{2}=20^0\)
\(\widehat{AMB}=\widehat{AMC}=90^0\)
a) Tam giác ABC có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180\)
Mà \(\widehat{BAC}=60\)
Suy ra \(\widehat{ABC}+\widehat{ACB}=180-60=120\)
Vì BD, CE lần lượt là phân giác \(\widehat{ABC}\)và \(\widehat{ACB}\)
Nên \(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}\)=\(\frac{120}{2}=60\)
Tam giác BIC có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180\)
Suy ra 60 + \(\widehat{BIC}\)=180
Suy ra \(\widehat{BIC}\)= 180-60=120
a. Xét 2 TG AMC và DMB, ta có:
AM=DM(M là tđiểm của AD); BM=CM(Mlaf tđiểm BC); BMD=AMC(2 góc Đối đỉnh)
=>TG AMC=TG DMB(c.g.c)
b. Xét 2 TG AMB và CMD, ta có:
AM=DM(gt);BM=CM(gt); AMB=CMD(đđ)
=>TG AMB=TG CMD(c.g.c)
=>BAM=CDM(2 góc tương ứng)
mà chúng lại ở vị trí slt=>AB//CD.
c. sory!!! I don't know
a: EC=12cm
b: Xét ΔABD vuông tại D và ΔaCE vuông tại E có
BA=CA
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
c: Xét ΔIBE vuông tại E và ΔICD vuông tại D có
EB=DC
góc IBE=góc ICD
Do đó: ΔIBE=ΔICD
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta co: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có MB=MC
nen M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
\(\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM.chung\end{matrix}\right.\Rightarrow\Delta AMC=\Delta AMB\left(c.c.c\right)\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^0\Rightarrow\widehat{AMB}=\dfrac{180^0}{2}=90^0\)
Xong =))???