K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:

a) Vì $M$ là trung điểm của $BC$ nên $BM=CM$

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$ (giả thiết)

$AM$ chung

$BM=CM$ (cmt)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b) 

Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$ hay $\widehat{BAK}=\widehat{CAK}$

Xét tam giác $BAK$ và $CAK$ có:

$BA=CA$ (gt)

$AK$ chung

$\widehat{BAK}=\widehat{CAK}$ (cmt)

$\Rightarrow \triangle BAK=\triangle CAK$ (c.g.c)

$\Rightarrow KB=KC$ 

c) Từ tam giác bằng nhau phần b suy ra $\widehat{ABK}=\widehat{ACK}$

hay $\widehat{EBK}=\widehat{FCK}$

Xét tam giác $EBK$ và $FCK$ có:

$\widehat{EBK}=\widehat{FCK}$ (cmt)

$BK=CK$ (cmt)

$\widehat{EKB}=\widehat{FKC}$ (đối đỉnh)

$\Rightarrow \triangle EBK=\triangle FCK$ (g.c.g)

$\Rightarrow EK=FK$ nên tam giác $KEF$ cân tại $K$

$\Rightarrow \widehat{KEF}=\frac{180^0-\widehat{EKF}}{2}(1)$

$KB=KC$ nên tam giác $KBC$ cân tại $K$

$\Rightarrow \widehat{KCB}=\frac{180^0-\widehat{BKC}}{2}(2)$

Từ $(1);(2)$ mà $\widehat{EKF}=\widehat{BKC}$ (đối đỉnh) nên $\widehat{KEF}=\widehat{KCB}$ 

Hai góc này ở vị trí so le trong nên $EF\parallel CB$ (đpcm)

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Hình vẽ:

undefined

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: ΔABM=ΔACM

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

=>KM\(\perp\)BC
Xét ΔKBC có

KM là đường cao

KM là đường trung tuyến

Do đó:ΔKBC cân tại K

=>KB=KC

c: ΔKBC cân tại K

=>\(\widehat{KBC}=\widehat{KCB}\)

\(\widehat{ABF}+\widehat{FBC}=\widehat{ABC}\)

\(\widehat{ACE}+\widehat{ECB}=\widehat{ACB}\)

mà \(\widehat{FBC}=\widehat{ECB}\)

và \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABF}=\widehat{ACE}\)

=>\(\widehat{EBK}=\widehat{FCK}\)

Xét ΔEBK và ΔFCK có

\(\widehat{EBK}=\widehat{FCK}\)

BK=CK

\(\widehat{EKB}=\widehat{FKC}\)

Do đó: ΔEBK=ΔFCK

3 tháng 12 2023

Giup minh voi mn oi <Thank> 

26 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

=>KM\(\perp\)BC

Xét ΔKBC có

KM là đường cao

KM là đường trung tuyến

Do đó: ΔKBC cân tại K

=>KB=KC

c: Ta có: ΔKBC cân tại K

=>\(\widehat{KBC}=\widehat{KCB}\)

Ta có: \(\widehat{ABC}=\widehat{ABF}+\widehat{KBC}\)

\(\widehat{ACB}=\widehat{ACE}+\widehat{KCB}\)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

và \(\widehat{KBC}=\widehat{KCB}\)

nên \(\widehat{ABF}=\widehat{ACE}\)

Xét ΔABF và ΔACE có

\(\widehat{ABF}=\widehat{ACE}\)

AB=AC

\(\widehat{BAF}\) chung

Do đó: ΔABF=ΔACE

=>AF=AE

Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

nên EF//BC

a: Xét ΔABM và ΔADM có

AB=AD

AM chung

BM=DM

Do đó: ΔABM=ΔADM

a Xét ΔABM và ΔADM có 

AB=AD

AM chung

BM=DM

Do đó: ΔABM=ΔADM

b: Ta có: ΔABD cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

Suy ra: KB=KD

17 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

=>\(\widehat{DAM}=\widehat{EAM}\)

Xét ΔDAM và ΔEAM có

DA=EA

\(\widehat{DAM}=\widehat{EAM}\)

AM chung

Do đó: ΔDAM=ΔEAM

=>MD=ME

c: Xét ΔNKD và ΔNMB có

NK=NM

\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)

ND=NB

Do đó: ΔNKD=ΔNMB

=>\(\widehat{NKD}=\widehat{NMB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên KD//BM

mà M\(\in\)BC

nên KD//BC

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Ta có: KD//BC

DE//BC

KD,DE có điểm chung là D

Do đó: K,D,E thẳng hàng

12 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

mà tia AM nằm giữa hai tia AB,AC

nên AM là phân giác của \(\widehat{BAC}\)

b: Xét ΔCBD có CB=CD

nên ΔCBD cân tại C

Ta có: ΔCBD cân tại C

mà CN là đường phân giác

nên CN\(\perp\)BD

12 tháng 12 2023

cảm ơn bạn !