K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2021

a) Xét \(\Delta ABM\)\(\Delta ACM\) có:

AB = AC (gt)

AM chung

BM = MC (M là trung điểm BC)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (hai góc tương ứng)

\(\Rightarrow AM\) là tia phân giác của \(\widehat{BAC}\)

b) Xét hai tam giác vuông \(\Delta AME\)\(\Delta AMF\) có:

\(\widehat{AEM}=\widehat{AFM}=90^0\)

AM chung

\(\widehat{MAE}=\widehat{MAF}\) (do AM là tia phân giác của \(\widehat{BAC}\))

\(\Rightarrow\Delta AME=\Delta AMF\) (cạnh huyền - góc nhọn)

\(\Rightarrow AE=AF\) (hai cạnh tương ứng)

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNHBài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng : a) AE = BC; b)AB // ECBài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BCBài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân...
Đọc tiếp

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNH

Bài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng :

a) AE = BC; b)AB // EC

Bài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BC

Bài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân giác của góc xOy cắt AB ở C. Chứng minh rằng

a) C là trung điểm của AB

b) AB vuông góc với OC

Bài 4: Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Trên tia đối của tia BC và CB lấy tương ứng hai điểm D và E sao cho BD = CE. Chứng minh rằng AM là tia phân giác của góc BAC và DAE

Bài 5: Cho tam giác ABC có góc A = 1000, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA

a) Tính số đo góc ABK

b) về phía ngoài tam giác ABC, vẽ các đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Chứng minh rằng: tam giác ABK bằng tam giác DAK

c) Chứng minh MA vuông góc với DE

Bài 6: Cho tam giác ABC, D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Chứng minh rằng DE//BC và DE = 1/2 BC

Bài 7: Cho tam giác ABC vuông tại A, M là trung điểm của BC. Chứng minh rằng AM =1/2BC

Bài 8: Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC

a) Chứng minh rằng DE vuông góc với BC

b) Cho biết 4B = 5C trung điểm của BC. Chứng minh rằng :

a) FH = 2DE.

b) FH vuông góc với DE.

3
15 tháng 12 2016

nhìu quá bn à TTvTT

23 tháng 12 2016

từ từ thui

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

DO đó: ΔABE=ΔADE

b: Ta có: ΔABD cân tại A

mà AI là đường phân giác

nên I là trung điểm của BD

 

21 tháng 6 2021

mình đag cần gấp

21 tháng 6 2021

O x y m n

Vì Om là tia phân giác của góc xOy nên \(\widehat{xOm}=\widehat{yOm}=\frac{\widehat{xOy}}{2}\)

Ta có: \(\widehat{nOx}+\widehat{mOx}=\widehat{mOy}+\widehat{nOy}=180^o\)

\(\Rightarrow\hept{\begin{cases}\widehat{nOx}=180^o-\widehat{mOx}\\\widehat{nOy}=180^o-\widehat{mOy}\end{cases}}\)

Mà \(\widehat{xOm}=\widehat{yOm}\) (cmt)

\(\Rightarrow\widehat{nOx}=\widehat{nOy}\)

22 tháng 12 2016

câu a hơi kì nhỉ , theo mk thì phải là tam giác ABM = tam giác DCM chứ

22 tháng 12 2016

a) Xét \(\Delta ABM\)\(\Delta DCM\)có :

AM=DM ( gt )

BM=MC ( gt )

\(\widehat{BMA}=\widehat{DMC}\) ( 2 góc đối đỉnh )

do đó \(\Delta ABM\) = \(\Delta DCM\) ( c.g.c )

b) Vì \(\Delta ABM=\Delta DCM\)( c/m trên )

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong

nên AB // BC

 

21 tháng 6 2021

mình đag cần gấp

21 tháng 6 2021

O x z t m y

a) ta có zm cắt xy tại O (gt)

->  \(\widehat{xOz}\)và \(\widehat{mOy}\)là 2 góc đồng vị (tính chất)

=>\(\widehat{xOz}=\widehat{mOy}\)(tính chất)

b) vì Oz là tia phân giác của góc \(\widehat{xOt}\)(gt)

=>\(\widehat{xOz}=\widehat{zOt}\)(tính chất)

mà \(\widehat{xOz}=\widehat{mOy}\left(cmt\right)\)

=>\(\widehat{zOt}=\widehat{mOy}\)

c)ta có

\(\widehat{yOz}=\widehat{zOt}+\widehat{tOy}\)

và \(\widehat{mOt}=\widehat{mOy}+\widehat{yOt}\)

vì \(\widehat{tOy}\)là góc chung, \(\widehat{zOt}=\widehat{mOy}\left(cmt\right)\)

=>\(\widehat{yOz}=\widehat{mOt}\)

13 tháng 5 2016

a/ Xét tam giác BEM và tam giác CFM có:

Góc B=C(Tam giác ABC cân tại A)

Góc BEM=CFM(Tam giác ABC cân tại A)

BM=MC(Trung tuyến AM)

=> Tam giác BEM=tam giác CFM(ch-gn)

b/Gọi giao điểm của EF và AM là O.

Vì AM là trung tuyến của tam giác cân nên AM cũng là đường cao của tam giác cân ABC.

=> Góc AMB=AMC=90 độ.

Mà Góc EMB=FMC(góc tương ứng của tam giác EMB=tam giác FMC)

=> Góc EMO=FMO.

Xét tam giác EMO và tam giác FMO có:

EM=MF(cạnh tương ứng trong tam giác EMB= tam giác FMC)

Góc EMO=FMO(cmt)

MO chung

=> Tam giác EMO=tam giác FMO(c-g-c)

=> Góc EOM=FOM(góc tương ứng)=180 độ/2=90 độ 

     EO=OF(cạnh tương ứng)

=> AM là đường trung trực của EF.

c/ Vì AI=\(\frac{8}{3}\)cm nên AM có độ dài là: \(\frac{8}{3}:\frac{2}{3}=4\)cm(tính chất trọng tâm tam giác)

Áp dụng định lí Pytago vào tam giác vuông AMC, ta được:

AC2=AM2+MC2=42+MC2=52=25

=> MC=\(\sqrt{\left(5^2-4^2\right)}=3\)cm

Mà BM=MC(Trung tuyến AM)

=> BC=3+3=6cm

13 tháng 5 2016

A B C M E F