K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMC và ΔOMB có

AM=OM

\(\widehat{AMC}=\widehat{OMB}\)

MC=MB

Do đó:ΔAMC=ΔOMB

b: Xét tứ giác ABOC có

M là trung điểm của AO

M là trung điểm của BC

Do đó: ABOC là hình bình hành

Suy ra: AC//BO

c: Hình bình hành ABOC có AB=AC
nên ABOC là hình thoi

=>CO=CA

8 tháng 12 2016

Bạn tự vẽ hình nha

a)Xét tam giác AMB và tam giác DMC ta có:
        MA=MD(GT)

         AMB=DMC(ĐĐ)

        MB=MC(Vì M là TĐ)

      \(\Rightarrow\)Tam giác AMB=Tam giác DMC(c.g.c)

b)

Xét tam giác AMC và tam giác DMB ta có:
        MA=MD(GT)

         AMB=DMC(ĐĐ)

        MB=MC(Vì M là TĐ)

      \(\Rightarrow\)Tam giác AMC=Tam giác DMB(c.g.c)

\(\Rightarrow\)MAC=MDB(Cặp góc tương ứng)

\(\Rightarrow\)AC//BD(so le trong)

Câu c đợi mk nghĩ đã

8 tháng 12 2016

c)MK chỉ gợi ý thôi nha

Cần chứng minh CD//AB và CH//AB

24 tháng 12 2020
さ→❖๖☆☆ I⃣K⃣K⃣I⃣ G⃣ấU⃣ A⃣N⃣I⃣M⃣E⃣❖༻꧂ •๖ۣۜTεαм ƒαʋσυɾĭтε αηĭмε⁀ᶦᵈᵒᶫ
24 tháng 12 2024

Đgnsghmdhmdhmdgmdgmydmyeyk

 

2 tháng 12 2021

\(a,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ b,\left\{{}\begin{matrix}BM=MC\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABC}=\widehat{BCD}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}CD\\ c,\left\{{}\begin{matrix}BM=MC\\\widehat{AMC}=\widehat{BMD}\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\\ \Rightarrow\widehat{ACB}=\widehat{CBD}\\ \text{Mà 2 góc này ở vị trí slt nên }AC\text{//}BD\)

2 tháng 12 2021

cảm ơnvui

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm