Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBMD và ΔBCD có
BM=BC
góc MBD=góc CBD
BD chung
=>ΔBMD=ΔBCD
=>góc BMD=góc BCD=góc ABC
a) Xét ΔACN và ΔDBN có
NA=ND(gt)
\(\widehat{ANC}=\widehat{DNB}\)(hai góc đối đỉnh)
NC=NB(N là trung điểm của BC)
Do đó: ΔACN=ΔDBN(c-g-c)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Ta có: ΔACN=ΔDBN(cmt)
nên AC=DB(hai cạnh tương ứng)
mà AC=4cm(cmt)
nên BD=4cm
Vậy: BD=4cm
Xét ΔABC có
D là trung điểm của AB
DF//BC
Do đó: F là trung điểm của AC
Xét ΔABC có
D là trung điểm của AB
DE//AC
Do đó: E là trung điểm của BC
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của BC
Do đó: DE là đường trung bình của ΔBCA
a: Xét ΔABD và ΔACD có
AB=AC
BD=CD
AD chung
Do đó: ΔABD=ΔACD
b: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của \(\widehat{BAC}\)
c: ΔABD=ΔACD
=>\(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD\(\perp\)BC
a, Có D là trung điểm BC => BD = DC
Xét 2 tam giác ADB và ADC có
AD chung
BD = CD ( chứng minh trên )
AB = AC ( giả thiết)
=> tam giác ADB = tam giác ADC
b, Có tam giác ADB = tam giác ADC => góc ADB = góc ADC
Mà góc ADB + góc ADC = 180 độ
=> góc ADB = góc ADC =90 độ => AD vuông góc BC
tam giác có 2 cạnh bằng nhau là tam giác cân. Lấy BC làm đáy nối D lên A. Chắc chắn tam giác đó được : làm 2. AD= DC Cạnh 2 tam rác = nhau. Hết