Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác vuông: tam giác ABH và tam giác ACK có:
AB = AC (gt)
góc A chung
suy ra: tam giác ABH = tam giác ACK (ch-gn)
b) áp dụng định lí tổng 3 góc của tam giác vào tam giác vuông ABH ta có:
góc BAH + góc ABH = 90^0
=> góc ABH = 90^0 - góc BAH
=> góc ABH = 90^0 - 50^0 = 40^0
Tam giác ABC cân tại A => \(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}=65^0\)
=> góc HBC = 25^0
Tương tự: góc KCB = 25^0
suy ra: góc BOC = 130^0
a: \(\widehat{ABH};\widehat{ACK}\) là các góc phụ với A
b: Vì \(\widehat{ABH}+\widehat{A}=90^0\)
mà \(\widehat{ACK}+\widehat{A}=90^0\)
nên \(\widehat{ABH}=\widehat{ACK}\)
\(\widehat{BIK}=\widehat{CIH}\)(hai góc đối đỉnh)
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc BAH chung
Do đó: ΔABH=ΔACK
SUy ra: BH=CK
b: M là trung điểm cua BC nên MB=MC=3cm
=>AM=4cm
c: Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)
nên ΔDBC cân tại D
=>D nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,D,M thẳng hàng