Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
b: Xet ΔABC có HK//BC
nên AH/AB=HK/BC
=>HK/18=6/9=2/3
=>HK=12(cm)
c: Xét ΔABM có HI//BM
nên HI/BM=AI/AM
Xét ΔAMC có IK//MC
nên IK/MC=AI/AM
=>HI/BM=IK/MC
mà BM=CM
nên HI=IK
=>I là trung điểm của HK
a: Xét ΔABC có
\(\dfrac{AH}{AB}=\dfrac{AK}{AC}\left(=\dfrac{2}{3}\right)\)
Do đó: HK//BC
b: Xét ΔBAC có HK//BC
nên \(\dfrac{HK}{BC}=\dfrac{AH}{AB}\)
\(\Leftrightarrow HK=\dfrac{2}{3}\cdot18=12\left(cm\right)\)
c: Xét ΔAMB có HI//BM
nên \(\dfrac{HI}{BM}=\dfrac{AH}{AB}\)
hay \(\dfrac{HI}{BM}=\dfrac{2}{3}\left(1\right)\)
Xét ΔAMC có IK//MC
nên \(\dfrac{IK}{MC}=\dfrac{AK}{AC}\)
hay \(\dfrac{IK}{MC}=\dfrac{2}{3}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(\dfrac{IH}{MB}=\dfrac{IK}{MC}\)
mà MB=MC
nên IH=IK
hay I là trung điểm của HK
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB