![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng định lí Pitago vào tg vuông ABC, ta có:
\(BC^2=AB^2+AC^2\)
=> \(BC^2=8^2+6^2\)
=> \(BC^2=100\)
=> BC = 10 (cm)
b) Bạn ghi rõ đề bài được ko ??
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ΔABCΔABC vuông tại A, theo định lí Py-ta-go
Ta có: BC2 = AB2 + AC2
=> BC2 = 82 + 62
BC2 = 100
=> BC = 100−−−√=10(cm)100=10(cm)
b) Xét hai tam giác vuông ABE và ADE có:
AB = AD (gt)
AE: cạnh chung
Vậy: ΔABE=ΔADE(hcgv)ΔABE=ΔADE(hcgv)
Suy ra: BE = DE (hai cạnh tương ứng)
BEAˆ=DEAˆBEA^=DEA^ (hai góc tương ứng)
Ta có: BEAˆ+BECˆ=180oBEA^+BEC^=180o
DEAˆ+DECˆ=180oDEA^+DEC^=180o
Mà BEAˆ=DEAˆBEA^=DEA^ (cmt)
Suy ra: BECˆ=DECˆBEC^=DEC^
Xét hai tam giác BEC và DEC có:
BE = DE (cmt)
BECˆ=DECˆBEC^=DEC^ (cmt)
EC: cạnh chung
Vậy: ΔBEC=ΔDEC(c−g−c)ΔBEC=ΔDEC(c−g−c).
goi DE ∩∩ BC tại I
có AB = AD (gt)
=> CA là đường trung tuyến của ΔΔ ABC
có AE = 2 cm ( gt)
và AC = 6 cm (gt)
=> AE = 1313AC
=> E là trọng tâm của ΔΔ ABC
=> DE là đường trung tuyến còn lại
=> BI = CI ( theo tính chất đường trung tuyến )
=> I là trung điểm của BC
vậy DE đi qua trung điểm của BC
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C G M
Giải:
a, Ta có: \(AB^2+AC^2=6^2+8^2=100\)
\(BC^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( đpcm )
b, \(\Delta ABC\) vuông tại A có AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow AM=5\)
Mà \(AG=\dfrac{2}{3}.AM\Rightarrow AG=\dfrac{10}{3}\left(cm\right)\)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
a) AB = 20 cm ( theo Pi - ta - go )
b) tg MNP là tg vuông (MN2 + NP2 = PM2 )
a) Xét tam giác ABC vuông tại A:
Theo đinh lý Py-ta-go ta có : AB2 + AC2 = BC2
AB2 = BC2 - AC2
AB2 = 292 - 212 => AB2 = 841 - 441 = 400 => AB = 20 ( cm )
b) Ta có : 252 + 602 = 652 hay 625 + 3600 = 4225
=> Tam giác MNP là tam giác vuông
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình bạn tự vẽ nha!
Đề phải là \(\Delta ABC\) vuông tại A nhé.
+ Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go).
=> \(BC^2=3^2+4^2\)
=> \(BC^2=9+16\)
=> \(BC^2=25\)
=> \(BC=5\left(cm\right)\) (vì \(BC>0\)).
+ Vì điểm I cách đều 3 cạnh của \(\Delta ABC\left(gt\right)\)
=> \(BI=CI.\)
Xét 2 \(\Delta\) vuông \(BIM\) và \(CIM\) có:
\(\widehat{BMI}=\widehat{CMI}=90^0\left(gt\right)\)
\(BI=CI\left(cmt\right)\)
Cạnh IM chung
=> \(\Delta BIM=\Delta CIM\) (cạnh huyền - cạnh góc vuông).
=> \(BM=CM\) (2 cạnh tương ứng).
=> M là trung điểm của \(BC.\)
=> \(BM=CM=\frac{1}{2}BC\) (tính chất trung điểm).
=> \(BM=CM=\frac{1}{2}.5=\frac{5}{2}=2,5\left(cm\right).\)
=> \(BM=2,5\left(cm\right).\)
Vậy \(BM=2,5\left(cm\right).\)
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét \(\Delta ABC\)cân tại \(A\left(gt\right):\)
\(\Rightarrow AB=AC\)
Xét \(\Delta ABD\)và \(\Delta ACD,:\)
\(\widehat{BAD}=\widehat{CAD}\left(AD:tpg\widehat{BAC}\right)\)
\(AB=AC\left(cmt\right)\)
\(AD\)chung
\(\Leftrightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
\(+,\Rightarrow BD=CD\)( 2 cạnh t/ứ)
\(\Rightarrow D\)là trung điểm của \(BC\)
\(\Rightarrow BD=CD=\frac{BC}{2}=\frac{14}{2}=7\left(cm\right)\)
\(+,\Rightarrow\widehat{BDA}=\widehat{CDA}\)( 2 góc t/ứ)
Mà \(\widehat{BDA}+\widehat{CDA}=180^0\)
\(\Rightarrow2\widehat{BDA}=180^0\Leftrightarrow\widehat{BDA}=90^0\)
\(\Rightarrow\Delta ABD\perp\)tại \(D\)
\(\Rightarrow AD^2+BD^2=AB^2\left(Py-ta-go\right)\)
\(\Rightarrow15^2+7^2=AB^2\)
\(\Rightarrow AB^2=225+49\)
\(\Rightarrow AB^2=274\)
\(\Rightarrow AB=\sqrt{274}cm\)
chúc bạn học tốt
ko bit
Aps dụng định lý pi-ta-go :
ab^2+ac^2=bc^2
7^2+8^2=bc^2
49+64=bc^2
113=b^2
\(\Rightarrow BC=\sqrt{113}\)
\(\Rightarrow BC=10,63\approx10,7cm\)