K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A có AH là đường cao

nên CA^2=CH*CB

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(AD=\dfrac{2\cdot15\cdot20}{15+20}\cdot cos45=\dfrac{60}{7}\sqrt{2}\)(cm)

AH=15*20/25=12(cm)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{12}{7}\left(cm\right)\)

c: ΔABI vuông tại A có AK là đường cao

nên BK*BI=BA^2=BH*BC

=>BK/BC=BH/BI

=>ΔBKH đồng dạng với ΔBCI

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)

Vậy: BC=10cm; AD=3cm; CD=5cm

b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)

\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)

Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)

Xét ΔCED và ΔCAB có 

\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)

\(\widehat{C}\) chung

Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)

 

11 tháng 4 2022

a.Xét tam giác ABC và tam giác HBA, có:

^A=^H = 90 độ

^B: chung

Vậy tam giác ABC đồng dạng tam giác HBA ( g.g )

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BC.HB\)

b.Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC=\sqrt{15^2+20^2}=25cm\)

Ta có:\(AB^2=BC.HB\)

\(\Leftrightarrow15^2=25HB\)

\(\Leftrightarrow HB=9cm\)

\(\Rightarrow HC=25-9=16cm\)

c. Áp dụng t/c đường phân giác góc A, ta có:

\(\dfrac{DC}{AC}=\dfrac{DB}{AB}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{DC}{AC}=\dfrac{DB}{AB}=\dfrac{DC+DB}{AC+AB}=\dfrac{25}{35}=\dfrac{5}{7}\)

\(\Rightarrow DB=\dfrac{5}{7}.15=\dfrac{75}{7}cm\)

 

a: Xét ΔABC vuông tại A và ΔEAC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEAC

Xét ΔABC vuông tại A có AE là đường cao

nên AE^2=BE*CE

b: Xét tứ giác AEDC có

góc AEC=góc ADC=90 độ

=>AEDC là tứ giác nội tiếp

=>góc EAD=góc BCO

 

20 tháng 3 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )

c) Theo (1), ta đã có:

OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)

CMTT : ONDC=OBDBONDC=OBDB (4)

Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )

a) Xét ΔHEA vuông tại E và ΔHDB vuông tại D có 

\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)

Do đó: ΔHEA\(\sim\)ΔHDB(g-g)

23 tháng 3 2021

giúp mik câu c với