Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/ Nối MA; MD; ME ta có
^DME=^DMA+^CMA (1)
^DMA=90 (góc nội tiếp chắn nửa đường tròn (B)) (2)
^CMA=90 (góc nội tiếp chắn nửa đường tròn (C)) (3)
Từ (1) (2) (3) => ^DME=90 độ => D, M, E thẳng hàng
a. Chứng minh tam giác ABC vuông
+ Xét tam giác ABC có :
AB^2+AC^2=100
BC^2=10^2=100
=> AB^2+ AC^2= 100=BC^2
=> tam giác ABC vuông tại A ( Py-ta-go)
áp dụng định lý py ta go đảo vào tam giác ABC Ta có:
62+82=102⇒AB2+AC2=BC2
⇒tam giác ABC là tam giác vuông tại A
Xét tam giác ABC và tam giác HBA
ta có B là góc chung
góc A = góc H=90 độ
⇒tam giác ABC đồng dạng với tam giác HBA
⇒BCBA =ACHA
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét (B)có
BA là bán kính
CA\(\perp\)AB tại A
Do đó: CA là tiếp tuyến của (B)
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó; AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại trung điểm của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
=>\(OH\cdot10=6^2=36\)
=>OH=36/10=3,6(cm)
b:
ΔOBA vuông tại B
=>\(OB^2+BA^2=OA^2\)
=>\(BA^2=10^2-6^2=64\)
=>\(BA=\sqrt{64}=8\left(cm\right)\)
Xét (O) có
DB,DM là tiếp tuyến
Do đó: DB=DM và OD là phân giác của \(\widehat{MOB}\)
Xét (O) có
EM,EC là tiếp tuyến
Do đó: EM=EC và OE là phân giác của \(\widehat{MOC}\)
Chu vi tam giác AED là:
\(C_{AED}=AD+DE+AE\)
\(=AB-BD+DM+ME+AC-CE\)
=AB+AC
=2*AB
=16(cm)
c:
OD là phân giác của góc MOB
=>\(\widehat{MOD}=\dfrac{1}{2}\cdot\widehat{MOB}\)
OE là phân giác của góc MOC
=>\(\widehat{MOE}=\dfrac{1}{2}\cdot\widehat{MOC}\)
Xét ΔBOA vuông tại B có \(sinBOA=\dfrac{BA}{OA}=\dfrac{4}{5}\)
nên \(\widehat{BOA}\simeq53^0\)
\(\widehat{DOE}=\widehat{DOM}+\widehat{MOE}\)
\(=\dfrac{1}{2}\cdot\widehat{BOM}+\dfrac{1}{2}\cdot\widehat{COM}\)
\(=\dfrac{1}{2}\cdot\widehat{BOC}=\widehat{BOA}\)
\(=53^0\)
a
Theo giả thiết có:
`AB=AC`
`OB=OC`
=> AO là đường trung trực của đoạn BC
=> AO⊥BC
b
Ta có:
`OB=OC=R`
Gọi điểm giao nhau của BC và OA là H có:
`HB=HC`
Từ trên suy ra: HO là đường trung bình của ΔCDB
=> HO//BD
=> OA//BD (H nằm trên đoạn OA)
c
AB là tiếp tuyến đường tròn.
=> OB⊥AB
Lại có: BH⊥OA (cmt)
Áp dụng hệ thức lượng vào tam giác OAB vuông tại B, đường cao BH có:
\(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{OB^2}\\ \Leftrightarrow\dfrac{1}{BH^2}=\dfrac{1}{8^2}+\dfrac{1}{6^2}\\ \Rightarrow BH=\sqrt{1:\left(\dfrac{1}{8^2}+\dfrac{1}{6^2}\right)}=\dfrac{24}{5}=4,8\left(cm\right)\)
\(BC=2BH\left(BH=HC\right)\\ \Rightarrow BC=2.4,8=9,6\left(cm\right)\)
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm.Khi đó:
A. AC là tiếp tuyến của đường tròn (B;6cm).
B. AB là tiếp tuyến của đường tròn (C;10cm).
C. BC là tiếp tuyến của đường tròn (A;6cm).
D. BC là tiếp tuyến của đường tròn (A;8cm).
Học tốt !
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm.Khi đó:
A. AC là tiếp tuyến của đường tròn ( B;6cm).
B. AB là tiếp tuyến của đường tròn (C;10cm).
C. BC là tiếp tuyến của đường tròn (A;6cm).
D. BC là tiếp tuyến của đường tròn (A;8cm).
Chuẩn nhé:)