K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2020

Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm.Khi đó:

  A. AC là tiếp tuyến của đường tròn (B;6cm).

  B. AB là tiếp tuyến của đường tròn (C;10cm).

  C. BC là tiếp tuyến của đường tròn (A;6cm).

  D. BC là tiếp tuyến của đường tròn (A;8cm).

Học tốt !

Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm.Khi đó:

  A. AC là tiếp tuyến của đường tròn ( B;6cm).

  B. AB là tiếp tuyến của đường tròn (C;10cm).

  C. BC là tiếp tuyến của đường tròn (A;6cm).

  D. BC là tiếp tuyến của đường tròn (A;8cm).

Chuẩn nhé:)

15 tháng 10 2016

c/ Nối MA; MD; ME ta có

^DME=^DMA+^CMA (1)

^DMA=90 (góc nội tiếp chắn nửa đường tròn (B)) (2)

^CMA=90 (góc nội tiếp chắn nửa đường tròn (C)) (3)

Từ (1) (2) (3) => ^DME=90 độ => D, M, E thẳng hàng

29 tháng 10 2021

a. Chứng minh tam giác ABC vuông
+ Xét tam giác ABC có : 
AB^2+AC^2=100 
BC^2=10^2=100 
=> AB^2+ AC^2= 100=BC^2 
=> tam giác ABC vuông tại A ( Py-ta-go)
áp dụng định lý py ta go đảo vào tam giác ABC  Ta có:
62+82=102⇒AB2+AC2=BC2
⇒tam giác ABC là tam giác vuông tại A
Xét tam giác ABC và tam giác HBA
ta có B là góc chung
góc A = góc H=90 độ
⇒tam giác ABC đồng dạng với tam giác HBA
⇒BCBA =ACHA

30 tháng 10 2021

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét (B)có 

BA là bán kính

CA\(\perp\)AB tại A

Do đó: CA là tiếp tuyến của (B)

a: Xét (O) có

AB,AC là tiếp tuyến

Do đó; AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại trung điểm của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

=>\(OH\cdot10=6^2=36\)

=>OH=36/10=3,6(cm)

b:

ΔOBA vuông tại B

=>\(OB^2+BA^2=OA^2\)

=>\(BA^2=10^2-6^2=64\)

=>\(BA=\sqrt{64}=8\left(cm\right)\)

Xét (O) có

DB,DM là tiếp tuyến

Do đó: DB=DM và OD là phân giác của \(\widehat{MOB}\)

Xét (O) có

EM,EC là tiếp tuyến

Do đó: EM=EC và OE là phân giác của \(\widehat{MOC}\)

Chu vi tam giác AED là:

\(C_{AED}=AD+DE+AE\)

\(=AB-BD+DM+ME+AC-CE\)

=AB+AC

=2*AB

=16(cm)

c:

OD là phân giác của góc MOB

=>\(\widehat{MOD}=\dfrac{1}{2}\cdot\widehat{MOB}\)

OE là phân giác của góc MOC

=>\(\widehat{MOE}=\dfrac{1}{2}\cdot\widehat{MOC}\)

Xét ΔBOA vuông tại B có \(sinBOA=\dfrac{BA}{OA}=\dfrac{4}{5}\)

nên \(\widehat{BOA}\simeq53^0\)

 \(\widehat{DOE}=\widehat{DOM}+\widehat{MOE}\)

\(=\dfrac{1}{2}\cdot\widehat{BOM}+\dfrac{1}{2}\cdot\widehat{COM}\)

\(=\dfrac{1}{2}\cdot\widehat{BOC}=\widehat{BOA}\)

\(=53^0\)

1 tháng 8 2023

a

Theo giả thiết có:

`AB=AC`

`OB=OC`

=> AO là đường trung trực của đoạn BC

=> AO⊥BC

b

Ta có:

`OB=OC=R`

Gọi điểm giao nhau của BC và OA là H có:

`HB=HC`

Từ trên suy ra: HO là đường trung bình của ΔCDB

=> HO//BD

=> OA//BD (H nằm trên đoạn OA)

 

1 tháng 8 2023

c

AB là tiếp tuyến đường tròn.

=> OB⊥AB

Lại có: BH⊥OA (cmt)

Áp dụng hệ thức lượng vào tam giác OAB vuông tại B, đường cao BH có:

\(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{OB^2}\\ \Leftrightarrow\dfrac{1}{BH^2}=\dfrac{1}{8^2}+\dfrac{1}{6^2}\\ \Rightarrow BH=\sqrt{1:\left(\dfrac{1}{8^2}+\dfrac{1}{6^2}\right)}=\dfrac{24}{5}=4,8\left(cm\right)\)

\(BC=2BH\left(BH=HC\right)\\ \Rightarrow BC=2.4,8=9,6\left(cm\right)\)