Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : BC2 = 102 = 100
AC2 +AB2 =62 + 82 =36 +64 = 100
BC2 =AC2 + AB2
suy ra tam giác ABC vuông tại A ( định lý pytago đảo )
a, AB = 6 => AB^2 = 6^2 = 36
AC = 8 => AC^2 = 8^2 = 64
=> AB^2 + AC^2 = 36 + 64 = 100
BC = 10 => BC^2 = 10^2 = 100
=> BC^2 = AB^2 + AC^2
=> tam giác ABC vuông tại A (định lí PTG đảo)
a. ta có : \(BC^2=AB^2+AC^2\)
\(10^2=8^2+6^2\)
=> ABC vuông tại A ( pitago đảo )
b. xét tam giác vuông BAD và tam giác vuông BED có:
B: góc chung
BD : cạnh chung
Vậy...
=> AD = AE ( 2 góc tưng ứng )
a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow100=36+64\)* đúng *
Vậy tam giác ABC vuông tại A
b, Xét tam giác ABD và tam giác CBD ta có :
^ABD = ^CBD ( BD là phân giác )
^BAD = ^BCD = 900
BD _ chung
Vậy tam giác ABD và tam giác CBD ( ch - gn )
=> AD = DC ( 2 cạnh tương ứng )
Áp dụng định lí py ta go trong tam giác ABC ta có:
AB2+AC2=BC2
62+82=102
36+64=100
Suy ra tam giác ABC vuông (giải hộ câu a thôi tự nghĩ đi)
a) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á
a) Theo đề ra ta có:
AB= 6 (cm) => \(AB^2=6^2=36\)
AC= 8 (cm) => \(AC^2=8^2=64\)
BC=10(cm) => \(BC^2=10^2=100\)
Ta thấy: 100=36+64 => \(BC^2=AB^2+AC^2\) => Tam giác ABC vuông tại A ( Theo định lý Py-ta-go đảo)
b) Xét tam giác vuông BAD và tam giác vuông BED, ta có:
\(\widehat{B_1}=\widehat{B_2}\)(Do BD là tia phân giác của góc B)
Chung BD
=> \(\Delta BAD=\Delta BED\left(ch-gn\right)\)
=> DE=DA( cạnh tương ứng)
c) Xét tam giác EDC và tam giác ADF, có:
\(\widehat{CED}=\widehat{FAD}\left(=90^o\right)\)
DE=DA
\(\widehat{D_1}=\widehat{D_2}\)( góc đối đỉnh)
=> \(\Delta ADF=\Delta EDC\left(g.c.g\right)\)
=> DF=DC( cạnh tương ứng)
*) Xét trong tam giác vuông EDC thì góc vuông E là góc lớn nhất =.> CD là cạnh lớn nhất trong tam giác đó => DC>DE
Mà DC=DF => DF>DE
d)
Do tam giác BED = tam giác BAD => BE=BA (1)
Tam giác EDC= tam giác ADF => EC=AF(2)
Từ 1 và 2 => BE+EC=BA+AF=> BC=BF.
Xét tam giác BCK và tam giác BFK,có:
BF=BC
\(\widehat{B_1}=\widehat{B_2}\)
Chung BK
=> \(\Delta BFK=\Delta BCK\left(c.g.c\right)\) => CK=KF (*)
và \(\widehat{BKC}=\widehat{BKF}\) mà 2 góc này kề bù với nhau nên mỗi góc có số đo là \(90^o\)
Vậy KB hay là BD là đường trung trực của đoạn thẳng FC.
P/S: ở câu c nếu không muốn viết dài dòng có thể viết : Do BC=BF nên tam giác BCF cân tại B mà BK là tia phân giác góc B nên BK hay BD là đường trung trực của đoạn thẳng FC
Huỳnh Châu Giang ơi ....... không biết nhưng cậu xem lại hình đi ..... thật sự nó là đường trung trực mà à đường cao cũng được ....... do đó là tam giác cân nên đường cao và đường trung trực hay là đường trung tuyến ứng với cạnh đối diện của cái góc mà không giống 2 góc kia ý ( không biết diễn giải =.=)
oki bạn mình làm rùi nha