Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng ĐL pi - ta - go đảo :
\(AB^2+BC^2=AC^2\)
\(< =>4.5^2+6^2=7.5^2\)
Do \(4.5^2+6^2=7.5^2\)đúng
=>ĐPCM
a: \(BC^2=7.5^2=56.25\)
\(AB^2+AC^2=4.5^2+6^2=56.25\)
Do đó: \(BC^2=AB^2+AC^2\)
b: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: Xét ΔMHC và ΔMKB có
MH=MK
\(\widehat{HMC}=\widehat{KMB}\)
MC=MB
Do đó: ΔMHC=ΔMKB
Ta có: 20,25+36=56,25
=>4,52+62=7,52
Hay AB2+BC2=AC2
=> Tam giác ABC vuông tại B
Ta có : 3^2+4^2=9+16=25
Căn bậc hai của 25 bằng 5 suy ra tam giac ABC vuong tai A
Ta có:\(\widehat{MBC}=\widehat{NCB}\) ( 2 tia phân giác của 2 góc bằng nhau )
=> Tam giác KBC cân
=> KB = KC
Xét tam giác MBC và tam giác NCB, có:
BC: cạnh chung
\(\widehat{MBC}=\widehat{NCB}\)
^B = ^C
Vậy tam giác MBC = tam giác NCB ( g.c.g )
=> BM = CN
Mà KB = KC
=> KM = KN
=> Tam giác KMN cân tại K
Áp dụng đlý Pytago vào tam giác ABC:
AC2=BC2+AB2
52=42+32
52=25
Vậy tam giác ABC là tam giác vuông tại B (dpcm)
a, Xét tam giác ABH và tam giác ACH ta có
AB = AC (gt)
AH _ chung
^AHB = ^AHC = 900
Vậy tam giác ABH = tam giác ACH ( ch - cgv )
b, Xét tam giác ABC cân tại A
AH là đường cao đồng thời là đường trung tuyến
=> H là trung điểm BC
c, Do H là trung điểm BC => HB = 6/2 = 3 cm
Theo định lí Pytago tam giác AHB vuông tại H
\(AH=\sqrt{AB^2-BH^2}=\sqrt{25-9}=4cm\)