Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác adf và tam giác edc ta có
da=de (giải câu b)
góc fda = góc cde ( 2 góc đối đỉnh)
góc a= góc e
vậy tam giác adf = tam giác edc(g.c.g)
=>df=dc(2 cạnh tương ứng)(1)
xét tam giác dec vuông tại e ta có
dc>de(dc là cạnh huyền)(2)
từ (1)và (2) =>df=de
a)Ta có: BC2=52=25 (1)
AB2+AC2=32+42=25 (2)
Từ (1);(2)=>BC2=AB2+AC2(=25)
=>tam giác ABC vuông tại A (PyTaGo đảo)
b)Xét tam giác ABD vuông ở A và tam giác EBD vuông ở E(vì DE _|_ BC) có:
BD:cạnh chung
^ABD=^EBD (vì BD là phân giác của ^ABE)
=>tam giác ABD=tam giác EBD(ch-gn)
=>DA=DE (cặp cạnh t.ứ)
b)Xét tam giác ADF có: DF>DA (cạnh huyền>cạnh góc vuông)
Mà DA=DE(cmt)
=>DF>DE
Xét tam giác ADF vuông ở A và tam giác EDC vuông ở E có:
DA=DE(cmt)
^ADF=^EDC (2 góc đối đỉnh)
=>tam giác ADF=tam giác EDC (cgv-gnk)
=>DF=DC (cặp cạnh t.ứ)
DF ko bằng DE bn nhé!
a) Xét ...... ( tự làm )
=) BC2 = AC2 + AB2
=) Tam giác ABC vuông
b)
Xét............( tự làm )
=) tam giác ABD = tam giác BED ( ch-gn )
c)
Xét............( tự làm )
=) tam giác ADF = tam giác EDC ( g-c-g )
Xét tam giác vuông AFD có :
FD là cạnh huyền
=) FD là cạnh lớn nhất
=) FD > AD
mà AD = DE ( cm ở câu a )
=) DF > DE
bạn tự vẽ hình
a, ta có AB^2+AC^2=3^2+4^2=9+16=25
BC^2=5^2=25
do đó tam giác ABC vuông tại A ( theo pitago)
b,Xét tam giác ADB và tam giác EDB có góc A=góc E ( cùng bằng 90 độ)
BD chung
góc ABD=góc EBD ( BD là pg của góc B)
do đó tam giác ADB=tam giác EDB ( cạnh huyền góc nhọn)
=> DA=DE(2 cạnh tương ứng)
c,tự cm
a, Ta có \(BC^2=AB^2+AC^2\Leftrightarrow25=9+16\)( luôn đúng )
Vậy tam giác ABC vuông tại A(pytago đảo)
b, Xét tam giác BAD và tam giác BED có
^ABD = ^EBD ; BD _ chung
Vậy tam giác BAD = tam giác BED ( ch-gn)
=> DA = DE ( 2 cạnh tương ứng )
c, Xét tam giác ADF và tam giác EDC có
DA = DE ; ^ADF = ^EDC ( đối đỉnh )
Vậy tam giác ADF = tam giác EDC ( ch-cgv)
=> DF = DC ( 2 cạnh tương ứng )
mà DC > DE ( cạnh huyền lớn hơn cạnh góc vuông tam giác DEC vuông tại E )
=> DF > DE
a) Ta có: \(BC^2=AB^2+AC^2\) (do \(5^2=4^2+3^2\) )
\(\Rightarrow\Delta ABC\) vuông tại A
b) Xét 2 tam giác vuông BDA và BDE, có:
Góc ABD = góc EBD (phân giác BD của góc B)
BD là cạnh chung
\(\Rightarrow\) \(\Delta\) vuông BDA = \(\Delta\) vuông BDE(cạnh huyền - góc nhọn)
\(\Rightarrow\) DA = DE(2 cạnh tương ứng)
c) Xét 2 tam giác vuông ADF và EDC, ta có:
DA = DE (chứng minh a)
góc ADF = góc EDC (đối đỉnh)
\(\Rightarrow\Delta\) vuông ADF = \(\Delta\) vuông EDC (cạnh góc vuông - góc nhọn)
Ta có: \(\Delta\)ADF là tam giác vuông tại A
\(\Rightarrow\) DF là cạnh huyền của tam giác ADF
\(\Rightarrow\) DF > DA
Mà DE = DA (\(\Delta ADF=\Delta EDC\) )
nên DF > DE
a)
Ta co
a)
\(AB^2+AC^2=3^2+4^2=9+14=25\left(cm\right)\)
\(BC^2=5^2=25\left(cm\right)\)
=> tam giác ABC vuông tại A
b)
xét 2 tam giác vuông ABD và EBD có:
BD(chung)
EBD=ABD(gt)
=> tam giác ABD=EBD(CH-GN)
=> AD=DE
c)
xét tam giác ADF và tam giác EDC có:
DA=DE(theo câu b)
FAD=DEC=90
ADF=EDC(2 góc đđ)
=>tam giác ADF=EDC(g.c.g)
=> DC=DF
tam giác DEC vuông tại E => DC là cạnh lớn nhất trong tam giác DEC=> CD>DE
mà DC=DF=> DF>DE