Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
a)Ta có: BC2 = 52 = 25
AB2 + AC2 = 32 + 42 = 25
Vì AB2 + AC2 = BC2
=> Tam giác ABC vuông tại A (Theo định lí py-ta-go đảo).
b) Xét tam giác ABH và tam giác DBH có:
Gc A = Gc D(=900)
AB=BD (gt)
HB cạnh huyền chung.
Do đó: tam giác ABH = tam giác DBH (ch-cgv)
=> Gc ABH = Gc HBD (2 góc tưng ứng)
=> BH là phân giác của Gc ABC
c) P/s: Bn viết sai đề thì phải. Tg ABC không thể cân. Mà Tg AMB hoặc Tg AMC mới cân.
Xét tg ABC vng tại A.(cm ở câu a)
Có AM là trung tuyến.
=> AM = BM = CM (Vì trung tuyến ứng vs cạnh huyền thì = nửa cạnh huyền)
=> Tg AMB hoặc Tg AMC cân.
a)Ta có: BC2 = 52 = 25
AB2 + AC2 = 32 + 42 = 25
Vì AB2 + AC2 = BC2
=> Tam giác ABC vuông tại A (Theo định lí py-ta-go đảo).
b) Xét tam giác ABH và tam giác DBH có:
Gc A = Gc D(=900)
AB=BD (gt)
HB cạnh huyền chung.
Do đó: tam giác ABH = tam giác DBH (ch-cgv)
=> Gc ABH = Gc HBD (2 góc tưng ứng)
=> BH là phân giác của Gc ABC
c) P/s: Bn viết sai đề thì phải. Tg ABC không thể cân. Mà Tg AMB hoặc Tg AMC mới cân.
Xét tg ABC vng tại A.(cm ở câu a)
Có AM là trung tuyến.
=> AM = BM = CM (Vì trung tuyến ứng vs cạnh huyền thì = nửa cạnh huyền)
=> Tg AMB hoặc Tg AMC cân.
a) Tam giác ABC có AB2+AC2=BC2( 32+42=52)
=> Tam giác ABC vuông tại A
b)Xét tam giác DBA và tam giác DBE có
AB=BE
DBA=DBE ( vì BD là phân giác của góc ABC)
Cạnh BD chung
=> \(\Delta DBA=\Delta DBE\left(c.g.c\right)\)
c) Gọi O là giao điểm của BD và AE
Có tam giác DBA=tam giác DBE ( theo câu b)
=> AD=DE
Ta có AB=BE và AD=DE hay BD là đường trung trực của AE
Vậy \(AE⊥BD\)
d) Xét tam giác DCE vuông và tam giác DFA vuông có
AD=DE
FDA=CDE ( 2 góc đối đỉnh)
=> tam giác DCE= tam giác DFA ( cạnh góc vuông- góc nhọn)
=> DF=DC
=> tam giác DCF cân tại D
Tam giác DEA có DA=DE => Nó cân tại D
Mà CDF=ADE( 2 góc đối đỉnh)
=> FCD+DFC=DAE+DEA
=>2.FCD=2.DAE
=> FCD=DAE
Mà FCD và DAE là 2 góc so le trong
=> AE//CF
Cho tam giác ABC, AB= 3 cm, AC= 4 cm, BC= 5 cm.
a) So sánh 3 góc của tam giác ABC
b) ABC là tam giác gì? Vì sao?
c) Vẽ đường cao AH, so sanh MB và MC
Cho tam giác ABC, AB= 3 cm, AC= 4 cm, BC= 5 cm.
a) So sánh 3 góc của tam giác ABC
b) ABC là tam giác gì? Vì sao?
c) Vẽ đường cao AH, so sanh MB và MC
=> Bài này ko biết gải thông cảm nha!!!
a ) Ta có : AB² + AC² = 8² + 6² = 100
BC² = 10² = 100
=> AB² + AC² = BC²
=> Tam giác ABC vuông tại A ( Định lý Py-ta-go đảo )
b ) Áp dụng định lý Py - ta - go vào ΔABH vuông tại H có :
AH² + BH² = AB²
Hay AH² + 6,4² = 8²
<=> AH² = 64 - 40,96 = 23,04
=> AH = 4,8 cm
a: AB<AC<BC
=>góc C<gócB<góc A
b: Xét ΔABD và ΔEBD có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
c,d: ΔBAD=ΔBED
=>góc ADB=góc EDB và góc BAD=góc BED=90 độ
=>DB là phân giác của góc ADE và DE vuông góc BC
Tính \(AH\): dùng pytago với \(\Delta ABH\)
Tính \(HC\): dùng trừ đoạn
Tính \(AC\): đã có \(AH;HC\)thì dùng pytago với \(\Delta ACH\)