K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

Đường phân giác góc BAC cắt BC tại D

Ta có:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C.

12 tháng 5 2016

a) xét tam giác ( k biết ghi kí hiệu trên này :v) ABC và tam giác HBA có 
 góc B chung ( kí hiệu góc nhé :D) 
góc A = góc BHA = 90 độ ( gt) kí hiệu nhé 
Nên tam giác ABC ~ tam giác HBA (g .g) mình ms làm dc câu A thôi :v

 

13 tháng 5 2016

TỰ VẼ HÌNH NHA  

a) xét tám giác ABC và tam giác HBA 

góc A= góc H (=90 độ)

góc A :chung

=> tam giác ABC ~ tam giác HBA (g-g)

 

22 tháng 5 2021

B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB

             +)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )

                                                          BAC chung

                    Do đó: tg AEC ~ tg ADB ( gg)

         => AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)

     b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )

                        

22 tháng 5 2021

A B C 5 5 6 M N

a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )

\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)

\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm 

\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm

31 tháng 5 2020

A B C H D

Bài làm:

a) Xét 2 tam giác: \(\Delta ABC\)và \(\Delta HBA\)có:

\(\hept{\begin{cases}\widehat{ABC}chung\\\widehat{AHB}=\widehat{BAC}=90^0\end{cases}}\)

=> \(\Delta ABC\)đồng dang với \(\Delta HBA\)(G.G)

b) \(\Delta AHB\)đồng dạng với \(\Delta CAB\)(G.G) vì:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{AHC}=90^0\\\widehat{BAH}=\widehat{ACH}=90^0-\widehat{HAC}\end{cases}}\)

=> \(\frac{BH}{AH}=\frac{AH}{HC}\)\(\Leftrightarrow AH^2=BH.HC\)

c) Vì tam giác ABC vuông tại A nên theo định lý Py-ta-go, ta có:

\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

Theo phần a, \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(G.G)

=> \(\frac{BA}{AH}=\frac{BC}{AC}\Rightarrow AH=\frac{AB.AC}{BC}=\frac{48}{10}=4.8\left(cm\right)\)

Mà theo phần b, \(AH^2=BH.HC\)\(\Leftrightarrow BH.HC=4.8^2=23.04\Leftrightarrow HC=\frac{23.04}{HB}\)

Thay vào ta có: \(HB+HC=BC\)

\(\Leftrightarrow HB+\frac{23.04}{HB}=10\)

Từ đó ta giải phương trình ẩn HB ra, \(HB=3.6\left(cm\right)\)

=> \(HC=10-3.6=6.4\left(cm\right)\)

d) Đề bạn viết nhầm phải là cho AD là phân giác của tam giác ABC.

Áp dụng tính chất của tia phân giác trong tam giác ta có:

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{3}{4}\Leftrightarrow DC=\frac{4}{3}BD\)

Thay vào đó, ta giải phương trình sau:

\(BD+DC=BC\Leftrightarrow BD+\frac{4}{3}BD=10\)

Từ đó ta giải phương trình ẩn BD => \(BD=\frac{30}{7}cm\)

=> Diện tích tam giác ABD là:

\(S\Delta ABD=\frac{AH.BD}{2}=\frac{4.8\times\frac{30}{7}}{2}=\frac{72}{7}\left(cm^2\right)\)

Học tốt!!!!

9 tháng 7 2020

1)

A B H D c m n

Kẻ AH là đường cao của ABC

Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)

\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)

\(\Delta ABC\)có AD là tia phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)

Từ (1)(2) 

\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)

Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)

31 tháng 3 2019

A B C D E 6 H

a) BC = \(\sqrt{AB^2+AC^2}\)\(\sqrt{6^2+8^2}\)\(\sqrt{100}\)= 10 (theo định lí Pythagoras)

\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)\(\frac{CD}{BC}\)\(\frac{AD}{DC}\)\(\frac{AB}{BC}\)\(\frac{6}{10}\)\(\frac{3}{5}\).

b) Ta có : \(\widehat{ABE}\)\(\widehat{EBC}\)(BD là phân giác)

=> \(\Delta ABD\)\(\Delta EBC\)(gg)

=> \(\frac{BD}{BC}\)\(\frac{AD}{EC}\)<=>  BD.EC = AD.BC (đpcm).

c) Ta có : \(\Delta CHE\)\(\Delta CEB\)( 2 tam giác vuông có chung góc C )

=> \(\frac{CH}{CE}\)\(\frac{CE}{CB}\)<=>  CH.CB = CE2                                                     (1)

                \(\Delta CDE\)\(\Delta BDA\)(gg  (2 góc đối đỉnh))

                 \(\Delta BDA~\Delta BCE\) (câu b))

=> \(\Delta CDE~\Delta BCE\)

=> \(\frac{CE}{BE}\)\(\frac{DE}{CE}\)<=> BE.DE = CE2                                                        (2)

Từ (1) và (2) => CH.CB = ED.EB (đpcm).