Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất góc ngoài tam giác = tổng 2 góc trong không kề với nó.
Ta có
( B + C ):( A + C ):( A + B ) = 4:5:6
=> ( B + C )/4 = ( A + C )/5 = ( A + B )/6
Theo tính chất tỉ lệ thức kết hợp với tổng 3 góc trong tam giác = 360 độ.
=> ( B + C )/4 = ( B + C + A + C + A + B )/( 4 + 5 + 6 ) = 360/15 = 24
=> B + C = 96 (1)
Tương tự ta có
A + C = 120 (2)
A + B = 144 (3)
Kết hợp (1);(2);(3) ta có
A = 84; B = 60; C = 36
=> A:B:C = 84:60:36 = 7:5:3
tích nha lần sau mik sẽ giúp tiếp
Gọi các góc của tam giác lần lượt là a,b,c ( a,b,c \(\in\) N*)
Theo đề bài ta có :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\) và \(a+b+c=180\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{180}{6}=30\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{1}=30\Rightarrow a=30.1=30\\\dfrac{b}{2}=30\Rightarrow b=30.2=60\\\dfrac{c}{3}=30\Rightarrow c=30.3=90\end{matrix}\right.\)
Vậy...................
Gọi số đo 3 góc của 1 tam giac lần lượt là \(\widehat{A};\widehat{B};\widehat{C}\)
Theo bài ra ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhua, ta có:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}\)
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\dfrac{180^0}{6}=30^o\)
=>A=30.1=30
B=30.2=60
C=30.3=90
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
Theo bài ra:
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{15};\frac{\widehat{C}}{4}=\frac{\widehat{B}}{1}\Rightarrow\frac{\widehat{C}}{60}=\frac{\widehat{B}}{15}\)
=> \(\frac{\widehat{A}}{3}=\frac{\widehat{C}}{60}=\frac{\widehat{B}}{15}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+60+15}=\frac{180^0}{78}=\frac{30^o}{13}\)
Em tính tiếp nhé