K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

a,Xét \(\Delta\)AHB và AHD có:AH chung

                                   BH=HD(gt)

                                   AHB=AHD=90

vậy tam giác AHB= tam giác AHC

b,Tam giác ABD đều ms đúng chứ ạ bạn xem lại đề nha

Theo câu a ta có tam giác AHB =tam giác AHD nên AB=AD(2 cạnh tương ứng)

Xét tam giác ABD có AB=AD suy ra tam giác ABD cân mà góc ABD =60 độ(cái này bạn tự tính nha)

suy ra tam giác ABD đều

c,Dễ thấy được tam giác ADC cân tại D nên AD=DC

Xét tam giác AHD và tam giác CED có:

        AD=DC

        HDA=EDC(2 góc đối đỉnh)

        AHD=CED=90

nên tam giác AHD=tam giác CED(ch-gn)

suy ra HD=DE mà theo câu a tam giác AHB=AHD nên HD=HB

vậy HB=DE(đpcm)

d, I là giao điểm của CE và AH chứ bạn

Xét tam giác AIC có : AE vuông góc với IC

                                CH vuông góc với IA

                           mà CH cắt AE tại D

nên D là trực tâm của tam giác IAC

hay ID vuống góc với AC

mặt khác DF vuông góc với AC

nên I ,D,F thẳng hàng

Chúc bạn học tốt

a,Xét \(\Delta AHB\)và \(\Delta AHD\)

AH chung

HB=HD

\(\widehat{AHB}=\widehat{AHD}\left(=90^0\right)\)

=> \(\Delta AHB\)=\(\Delta AHD\)

b, xem lại đề

c, Vì \(\widehat{C}=30^0\Rightarrow\widehat{B}=30^0\Rightarrow\widehat{BAD}=60^0\)

\(\Rightarrow\widehat{DAC}=30^0\)

\(\Rightarrow\Delta DAC\)cân tại D

\(\Rightarrow DA=DC\)

Từ đó ta chứng minh được \(\Delta HAD=\Delta ECD\)

\(\Rightarrow HD=DE=BH\)(ĐPCM)

d,Xem lại đề

Chúc học tốt!!!!!! :)

6 tháng 11 2018

B A M E F D C 1 60 độ

a) - Vì ABCD là hình bình hành(gt)
\(\Rightarrow BC //AD\)và BC=AD
Mà \(E\in BC,F\in AD\)và \(BE=\frac{1}{2}BC,\text{AF}=\frac{1}{2}AD\)(gt)

Nên\(BE//\text{AF}\)và BE=AF
=> ABEF là hình bình hành (1)
Mặt khác AD=2AB(gt)
=>\(AB=\frac{AD}{2}\)

\(\text{AF}=\frac{AD}{2}\left(gt\right)\)

Nên AB=AF(2)
Từ (1) và (2) => ABEF là hình thoi
=> \(AE\perp BF\)
b) Ta có BC//FD(BC//AD,F thuộc AD)
=> BCDF là hình thang (3)
- Vì ABCD là hình bình hành(gt)
Nên \(\widehat{BAD}=\widehat{C}=60^o\)(4)
- Ta có : \(\widehat{B\text{AF}}+\widehat{ABE}=180^0\)(Trong cùng phía,BC//AD)
                          \(\widehat{ABE}=180^0-\widehat{B\text{AF}}\)

                              \(\widehat{ABE}=180^o-60^o=120^o\)

Mà ABEF là hình thoi

=> \(\widehat{B_1}=\widehat{\widehat{\frac{ABE}{2}}=\frac{120^o}{2}=60^o}\)(5)
Từ (4) và (5) => \(\widehat{C}=\widehat{B_1}\)(6)
Từ (3) và (6)
=> BCDF là hình thang cân
c) Vì ABCD là hình bình hành(gt)
Nên AB//CD và AB=CD
Mà M thuộc AB và AB=BM(M đối xứng với A qua B)
=> B là trung điểm của AB

Nên BM//CD và BM=CD

=> BMCD là hình bình hành (7)

- Xét \(\Delta ABF\)có ;
AB=AF(cmt)

=> \(\Delta ABF\)cân tại A
Mà \(\widehat{B\text{AF}}=60^o\)(gt)

Nên \(\Delta ABF\)đều

=> AB=BF=AF
- Xét \(\Delta ABD\)có:
BF là đường trung tuyến ứng với AD (FA=FD)
\(BF=\frac{1}{2}AD\)(BF=FA mà \(FA=\frac{1}{2}AD\))
Nên \(\Delta ABD\)vuông tại B
=> \(\widehat{MBD}=90^0\)(8)
Từ (7) và (8) =>BMCD là hình chữ nhật
Mà E là trung điểm của BC(gt)
Nên E là trung điểm của MD

Hay E,M,D thẳng hàng

6 tháng 11 2018

Câu hỏi của Yaden Yuki - Toán lớp 8 - Học toán với OnlineMath Em tham khảo bài làm ở link này nhé!

8 tháng 11 2018

a)xét tứ giác ADME có

CÂB =AÊM=góc ADM=900

=>ADME là hcn

b)vì MA là đg trung tuyến nên MA=MC=MB

xét tam giác CMA có

CM=MA(cmt)

CÊM=AÊM=900

EM là cạnh chung

=>...(cạnh huyền-cạnh góc vuông)

=>CE=EA

mà EA=MD(EAMD là hcn) nên CE=MD (1)

ta có MA=MC(cmt)

mà MA=ED(EAMD là hcn)

=>MC=ED (2)

xét tứ giác CMDE có CE=MD,CM=ED( 1 và 2)

=>CMED là hbh

c)

xét tam giác MDB vuông tại D có DI là trung tuyến nên MI=IB=ID

xét tứ giác MKDI có

KM=KD(K là giao điểm hai dg chéo của hcn)

KM=MI(vì MA=MB mà K và I lần lượt là trung điểm của chúng)

MI=ID(cmt)

=>KMID là thoi

mà KI là đg chéo của góc I nên KI cũng là p/g của góc I

(ck hk tốt nhé)

18 tháng 12 2022

a: Xet tứ giác ABDC có

M là trung điểm chung của AD và BC

góc BAC=90 độ

Do đó: ABDC là hình chữ nhật

b: Xét ΔADI có AH/AI=AM/AD

nên HM//DI

=>DI//BC

c: Xét tứ giác BIDC có

DI//BC

DB=IC

Do đó: BIDC là hình thang cân

20 tháng 12 2018

vẽ hình giùm

lười

20 tháng 12 2018

A B C D E F K H

6 tháng 11 2018

Do P là trung điểm của BC nên :

=) CP=BP=\(\frac{BC}{2}\)

Do Q là trung điểm của AD nên:

=) AQ=QD=\(\frac{A\text{D}}{2}\)

Mà AD=BC (Tính chất hình bình hành)

=) BP=AQ=PC=QD (1)

Mà 2 cạch AP và BP lại song song với nhau (2)

TỪ (1)và(2) =) Tứ giác ABPQ là hình bình hành

6 tháng 11 2018

b) Do AD=2AB =) AB =\(\frac{A\text{D}}{2}\)=) AQ=AB

Mà AQ=BP (Tính chất hình bình hành)

Và AB=PQ (Tính chất hình bình hành)

=) AB=BP=PQ=AQ

=) Tứ giác ABPQ là hình thoi

=) 2 đường chéo AP và BQ vuông góc với nhau

Hay AP \(\perp\)BQ

c) Do tứ giác ABPQ là hình bình hành nên =) \(\widehat{A}\) =\(\widehat{P}\)\(60^0\)

Xét tam giác BPQ có :

QP=PB (chứng minh trên )

\(\widehat{P}\)=  \(60^0\)

=) Tam giác BPQ là tam giác đều

=) \(\widehat{B}\) =\(60^0\) (1)

Mà \(\widehat{A}\) =\(\widehat{C}\)=\(60^0\)(Do ABCD là hình bình hành ) (2)

Và QP lại song song với BC =) BQDC là hình thang (3)

Tu (1) ;(2) va (3) =) BQDC là hình thang cân