K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2021

a; Xét tam giác ABC nội tiếp (O,R) có AH,BK là 2đường cao => góc AHB=góc BKA=90.

Vì K và H là 2 đỉnh liên tiếp của tứ giác ABHK 

=> tứ giác ABHK nội tiếp

b,Xét đường tròn (O,R) có góc ACB là góc nội tiếp chắn cung AB 

LẠi có góc AOB là góc ở tâm chắn cung AB 

=>sđ góc AOB=2 sđ góc ACB=2x70=140 độ

=> S quạt OAB=\(\pi\).R^2.n/360=\(\pi\).25.140/360=\(\pi\).175/18 cm2

c,

 

 

2 tháng 5 2021

c, xét tam giác ABC nội tiếp (O,R) có góc BED là góc nội tiếp chắn cung BD

Lại có tứ giác ABHK nội tiếp (cmt) nên góc BKH= góc BAH (cùng chắn cung BH)

Có góc BAD là góc nội tiếp chắn cung BD=> góc BAD=góc BED(cùng chắn cung BD)

=> góc BED=góc BKH mà 2 góc này ở vị trí đồng vị => HK song song DE

 

8 tháng 6 2015

A B C O H D K E

 

a/ cm tứ giác ABKH nội tiếp đường tròn và xđ tâm của đường tròn đó :

Trong tứ giác ABHK có : góc AKB = góc AHB = 90 độ 

                                   và cùng nhìn cạnh AB => tứ giác ABHK nội tiếp 

=> Tâm của đường tròn này nằm trên trung điểm của cạnh AB

b/ cm HK // DE:

Có : góc BED = góc BAD ( cùng chắn cung BD)

mà góc BAD = góc BKH ( tú giác ABHK nội tiếp)

=> góc BKH = góc BED mà ở vị trí đồng vị => HK // DE

20 tháng 1 2018

Bạn giải chưa ạ??

28 tháng 4 2018

có ai kg giúp mình giải bài này đi

a: góc AKB=góc AHB=90 độ

=>AKHB nội tiếp đường tròn đường kính AB

=>Tâm là trung điểm của AB

b: Gọi giao của AH và BK là M

ABHK là tứ giác nội tiếp

=>góc AHK=góc ABK

=>góc AHK=góc ADE

=>HK//DE

a: A,E,D,B cùng thuộc (O)

=>AEDB nội tiếp

A,E,C,B cùng thuộc (O)

=>AECB nội tiếp

B,E,C,D cùng thuộc (O)

=>BECD nội tiếp

góc AHB=góc AKB=90 độ

=>AKHB nội tiếp

b: Đề sai rồi bạn

a: Xét tứ giác CHIK có 

\(\widehat{IHC}+\widehat{IKC}=180^0\)

Do đó: CHIK là tứ giác nội tiếp

b: Xét tứ giác ABHK có \(\widehat{AHB}=\widehat{AKB}=90^0\)

nên ABHK là tứ giác nội tiếp

10 tháng 3 2022

\(a)\) Xét tứ giác CHIK:

\(\widehat{K}+\widehat{H}=90^o+90^o=180^o.\)

Mà 2 góc ở vị trí đối nhau.

\(\Rightarrow\) Tứ giác CHIK nội tiếp (dhnb).

\(b)\) Xét \(\Delta AKB:\widehat{AKB}=90^o.\)

\(\Rightarrow\Delta AKB\) nội tiếp đường tròn đường kính AB. \(\left(1\right)\)

Xét \(\Delta AHB:\widehat{AHB}=90^o.\)

\(\Rightarrow\Delta AHB\) nội tiếp đường tròn đường kính AB. \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow4\) điểm A; B; H; K cùng thuộc đường tròn có tâm là trung điểm của đoạn thẳng AB.

\(\Rightarrow\) Tứ giác ABHK nội tiếp (dhnb).

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0