K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2016

Mọi người giải dùm câu b và c được rồi ạ

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

góc AEB=góc ADB=90 độ

=>AEDB nội tiếp

b: góc ACK=góc ABK=1/2*sđ cung AK=90 độ

Xét ΔACK vuông tại C và ΔADB vuông tại D có

góc AKC=góc ABD

=>ΔACK đồng dạng với ΔADB

=>AC/AD=AK/AB

=>AC*AB=AD*AK=AD*2R

22 tháng 11 2022

a: Xét tứ giác BFEC có góc BFC=góc BEC=90 độ

nên BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔBCK nội tiếp

BK là đường kính

Do đó: ΔBCK vuông tại C

=>CK//AH

Xét (O) có

ΔBAK nội tiếp

BK là đường kính

Do đó: ΔBAK vuông tại A

=>AK//CH

Xét tứ giác CHAK có

CH//AK

CK//AH

DO đó: CHAK là hình bình hành

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

a) Tứ giác $AFHE$ có tổng 2 góc đối nhau  $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.

b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)

Xét tam giác $ABD$ và $AKC$ có:

$\widehat{ADB}=\widehat{ACK}=90^0$

$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)

$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)

$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$

$\Rightarrow AB.AC=AD.AK$ (đpcm)

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Hình vẽ:

undefined