Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Do AB là đường trung trực của HD nên AD=AH(1)
Do AC là đường trung trực của HE nên AE=AH(2)
Từ (1);(2) suy ra AD=AE.
b)
Do AD=AH nên \(\Delta ADH\) cân tại A suy ra AB vừa là đường cao,vừa là đường phân giác \(\Rightarrow\widehat{DAB}=\widehat{BAH}\)
Do AE=AH nên \(\Delta\)AEH cân tại A suy ra AC là đường cao đồng thời là đường phân giác \(\Rightarrow\widehat{EAC}=\widehat{HAC}\)
\(\Rightarrow\widehat{DAE}=\widehat{DAH}+\widehat{EAH}=\left(\widehat{DAB}+\widehat{BAH}\right)+\left(\widehat{EAC}+\widehat{HAC}\right)=2\cdot\widehat{BAH}+2\cdot\widehat{HAC}=2\left(\widehat{BAH}+\widehat{HAC}\right)\)\(=2\cdot75^0=150^0\)
c)
Xét tam giác KHI có:KB là phân giác ngoài tại đỉnh K(vì có AB là phân giác);IC là phân giác ngoài tại đỉnh C(vì có AC là phân giác).
Chúng cắt nhau tại A nên suy ra HA là phân giác trong \(\widehat{KHI}\)
d)
Gọi Hx là tia đối của HI;giao điểm của BI và CK là O
Do \(AH\perp BC;\widehat{KHA}=\widehat{IHA}\Rightarrow\widehat{KHB}=\widehat{IHC}\)
Lại có:\(\widehat{xHB}=\widehat{IHC}\left(đ.đ\right)\Rightarrow\widehat{xHB}=\widehat{KHB}\)
=> HB là phân giác \(\widehat{KHx}\) hay HB là phân giác góc ngoài tại đỉnh H.
Xét \(\Delta KHI\) có tia phân giác HB và KB cắt nhau tại B nên IB là tia phân giác góc trong tại đỉnh I.
Do IB và IC là tia phân giác của 2 góc kề bù nên chúng vuông góc với nhau.\(\left(\widehat{KIH}\&\widehat{HIE}\right)\)
Xét tam giác ABC có AH và BI là 2 đường cao cắt nhau tại O nên CK là đường cao hay CK vuông góc với AB.
hình vẽ đâu rùi còn về phần giao điểm thì mk ko hiểu là cụ thể ở chỗ nào nên chưa giải đc câu c
giải tạm a và b nhé
a) gọi giao của AB và DH là P; giao của AC và HE là M
xét 2 tam giác ADP và AHP có:
PD=PH(gt)
AB(chung)
APD=APH=90(độ)
suy ra tam giác ADP=AHP(c.g.c) suy ra AD=AH(1)
CM tương tự ta có: tam giác AKH =AKE(c.g.c) suy ra AH=AE(2)
từ (1)(2) suy ra : Ah=AE
AD=AH
suy ra AD=AE suy ra tam giác DAE cân tại A
chịu :))))
.... :)))))))))