Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BHI và tam giác ABI:
BHI = ABI (=90o)
HBI = BAI ( cùng phụ ABH)
=> Tg BHI ~ tg ABI (g.g)
=> \(\frac{IH}{BI}\)= \(\frac{BI}{IA}\)
=> BI2 = IH.IA (1)
Xét tam giác BCD có:
IH // CD (cùng vuông góc BC)
H trđ BC ( tam giác ABC cân tại Acó AH là dg cao => AH là dg trung tuyến)
=> I trđ BD => BI = ID (2)
Từ (1), (2) => ID2 = IH.IA (dpcm)
b) Ta có: DCK = CBK ( cùng phụ BCK)
Mà BAH = CBK (cmt)
=> DCK = BAH
Xét tg CKD và tg ABI:
DCK = BAI (cmt)
CKD = ABI ( =90o)
=> Tg CKD ~ tg ABI ( g.g)
"Còn NC = NK mình nhìn mắt thường còn chưa thấy nó bằng nhau lun á"
a) Tg ABC cân tại A có AH vuông BC (gt)
=> BH=HC
- Tg BDC có :
BH=HC (cmt)
HI//CD (cùng vuông BC)
=> BI=ID (đường TB)
- Xét tg ABI vuông tại B, đường cao BH có :
IH.IA=BI2 (htl)
Mà BI=ID (cmt)
=> ID2=IH.IA
b) Xét tg CKD và ABI có :
\(\widehat{CKD}=\widehat{ABI}=90^o\)
\(\widehat{AIB}=\widehat{CDK}\)(AI//CD)
=> Tg CDK~ABI (g.g)
\(\Rightarrow\frac{CK}{AB}=\frac{KD}{BI}\)
=> CK.BI=KD.AB (1)
Có : CK//AB\(\Rightarrow\frac{NK}{AB}=\frac{DK}{DB}\left(Talet\right)\)
=> NK.DB=AB.DK (2)
-Từ (1) và (2) => CK.BI=NK.DB=NE.2BI
=> CK=2NK
\(\Rightarrow NK=NC=\frac{CK}{2}\left(đccm\right)\)
#H
a: Kẻ tiếp tuyến Ax của (O)
Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\left(1\right)\)
Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
=>\(\widehat{FEC}+\widehat{FBC}=180^0\)
mà \(\widehat{FEC}+\widehat{AEF}=180^0\)(hai góc kề bù)
nên \(\widehat{AEF}=\widehat{ABC}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{AEF}=\widehat{xAC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//FE
Ta có: Ax//FE
OA\(\perp\)Ax
Do đó: OA\(\perp\)FE
b: Gọi giao điểm của AI và (O) là D
Xét (O) có
AO là bán kính
AO cắt (O) tại D
Do đó: AD là đường kính của (O)
Gọi giao điểm của AH với BC là N
Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại N
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)
Xét ΔANB vuông tại N và ΔACD vuông tại C có
\(\widehat{ABN}=\widehat{ADC}\)
Do đó: ΔANB~ΔACD
=>\(\widehat{BAN}=\widehat{CAD}\)
=>\(\widehat{BAN}+\widehat{NAD}=\widehat{CAD}+\widehat{NAD}\)
=>\(\widehat{PAE}=\widehat{IAB}\)
Xét ΔAPE và ΔAIB có
\(\widehat{PAE}=\widehat{IAB}\)
\(\widehat{AEP}=\widehat{ABI}\)
Do đó: ΔAPE~ΔAIB