Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:
^AHB = ^DHB ( 1v )
HA = HD ( giả thiết )
MH chung
=> \(\Delta\)AHB = \(\Delta\)DHB ( c.g.c)
b) Từ (a) => ^ABH = ^DHB => BH là phân giác ^ABD
Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC
=> BC là phân giác ^ABD
c) NF vuông BC
AH vuông BC
=> NF // AH
=> ^NFM = ^HAM ( So le trong )
Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )
=> \(\Delta\)NFM = \(\Delta\)HAM ( g.c.g)
=> NF = AH ( 2)
Từ ( a) => AH = HD ( 3)
Từ (2) ; (3) => NF = HD
b: Xét ΔCHA vuông tại H và ΔCHD vuông tại H có
CH chung
HA=HD
Do đó: ΔCHA=ΔCHD
Suy ra: CA=CD
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HB chung
HA=HD
Do đó: ΔABH=ΔDBH
Suy ra: \(\widehat{ABH}=\widehat{DBH}\)
hay BC là tia phân giác của góc ABD
Xét ΔACH vuông tại H và ΔDCH vuông tại H có
HC chung
HA=HD
Do đó: ΔACH=ΔDCH
Suy ra: \(\widehat{ACH}=\widehat{DCH}\)
hay CB là tia phân giác của góc ACD
b: Ta có: ΔABH=ΔDBH
nên BA=BD
Ta có: ΔACH=ΔDCH
nên CA=CD
c: Ta có: ΔAHC vuông tại H
nên \(\widehat{HAC}+\widehat{HCA}=90^0\)
\(\Leftrightarrow\widehat{CAD}=45^0\)
hay \(\widehat{ADC}=45^0\)
1: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
hay CA=CD
giúp em khúc 2,3,4 với ạ; tất cả đều cùng 1 bài
1 thì em chưa học đến tam giác cân
Ta có hình vẽ:
a/ Xét tam giác ABH và tam giác DBH có:
BH: chung
\(\widehat{AHB}\)=\(\widehat{DHB}\) = 900 (GT)
AH = HD (GT)
Vậy tam giác ABH = tam giác DBH (c.g.c)
=> \(\widehat{ABH}\)=\(\widehat{DBH}\) (2 góc tương ứng)
=> BC là phân giác \(\widehat{ABD}\) (đpcm)
b/ Xét tam giác ACH và tam giác DCH có:
CH : cạnh chung
\(\widehat{AHC}\)=\(\widehat{DHC}\)=900 (GT)
AH = HD (GT)
Vậy tam giác ACH = tam giác DCH (c.g.c)
=> CA = CD (2 cạnh tương ứng)
a)xét \(\Delta\)vuông ABH và \(\Delta\)vuông DBH có:
BH là cạnh chung
HA=HD(gt)
nên \(\Delta\)ABH=\(\Delta\)BDH(c.g.c)
suy ra góc ABH=góc DBH
nên BC là tia phân giác của góc ABD
b)xét \(\Delta\)vuông ACH và \(\Delta\)vuông DCH có:
CH là cạnh chung
HA=HD(gt)
nên \(\Delta\)ACH=\(\Delta\)DCH(c.g.c)
nên CA=CD