K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

Tam giác ADE và tg ABC có 

\(\hept{\begin{cases}\widehat{A}chung\\\\\frac{AD}{AE}=\frac{AB}{AC}\left(\frac{AD}{AB}=\cos\widehat{A}=\frac{AE}{AC}\right)\end{cases}}\)

Suy ra ADE đồng dạng ABC

=> đpcm

6 tháng 8 2018

sorry mk ch hojccasi này

23 tháng 4 2016

AI bit chi dum di

23 tháng 4 2016

vẽ hình

a xét tam giác ABD và tam giác ACE có :

chung góc BAC

góc BDA = góc CEA = 90 độ

=> tam giác ABD đồng dạng tam giác ACE (g.g)

b, xét tam giác EHB và tam giác DHC có

góc BDC = góc CFB = 90 độ 

góc BHF = góc DHC ( đối đỉnh )

=> tam giác EHB đồng dạng với tam giác DHC (g.g)

=> \(\frac{HB}{HC}=\frac{HE}{HD}\) 

=> HD . HB = HE . HC ( đpcm )

c, vì tam giác ABD đồng dạng với tam giác ACE ( câu a)

=> \(\frac{AB}{AC}=\frac{AD}{AE}\)  => \(\frac{AE}{AC}=\frac{AD}{AB}\)

xét tam giác ADE và tam giác ABC có 

chung góc BAC

\(\frac{AE}{AC}=\frac{AD}{AB}\) 

=> tam giác ADE đồng dạng với tam giác ABC ( c.g.c) 

=> góc ADE = góc ABC ( đpcm)

9 tháng 5 2022

a, Xét Δ ABD và Δ ABE, có :

\(\widehat{ADB}=\widehat{AEB}=90^o\)

\(\widehat{BAD}=\widehat{BAE}\) (góc chung)

=> Δ ABD ∾ Δ ABE (g.g)

b, Xét Δ EHB và Δ DHC, có :

\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)

\(\widehat{HEB}=\widehat{HDC}=90^o\)

=> Δ EHB ∾ Δ DHC (g.g)

=> \(\dfrac{EH}{DH}=\dfrac{HB}{HC}\)

=> \(HB.HD=HC.HE\)

9 tháng 5 2022

undefined

CHÚC EM HỌC TỐT NHÉok

16 tháng 5 2017

a) Có góc A chung và 2 góc vuông => ĐPCM

b) Xét EHB và DHC có:

2 góc vuông và 2 góc đối đỉnh  EHB và DHC

=> EHB đồng dạng với DHC

=>BH/CH=EH/DH

=>BH.DH=EH.CH

c)Từ câu a ta suy ra được tỉ số : AB/AC=AD/AE

và có góc A chung .

Từ đó suy ra: ADE đồng dạng với ABC

=> góc ADE= góc ABC

d) Ta có IO là đường trung bình ( tự chứng minh )

=> IO//AH => AHM đồng dạng với IOM

Tỉ số cạnh = AM/IM =2 ( do là đường trung bình )

Tỉ số diện tích của AHM so với IOM là 22=4

Vậy SAHM=4.SIOM

13 tháng 5 2019

A B C D E

\(\Delta ACE\)vuông tại A có \(\widehat{A}=60^o\)nên \(\widehat{ACE}=30^o\)

\(\Rightarrow\frac{AE}{AC}=\frac{1}{2}\)

Tương tự : \(\frac{AD}{AB}=\frac{1}{2}\)

\(\Rightarrow\frac{AE}{AC}=\frac{AD}{AB}\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\)

chứng minh : \(\Delta ADE\approx\Delta ABC\)( c.g.c )

\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\frac{1}{4}\)

\(\Rightarrow S_{ADE}=\frac{1}{4}S_{ABC}\)

17 tháng 5 2023

mình cần gâps huhu

 

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

b: Xet ΔHEB vuôg tại E và ΔHDC vuông tại D có

góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

c: ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

16 tháng 3 2023

Cảm ơn ban rất nhiều

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC

=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

 

1: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

2: Xet ΔHEB vuông tại E và ΔHDC vuông tại D có

góc EHB=góc DHC

=>ΔHEB đồng dạng với ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

3: ΔAMC vuông tại M có MD vuông góc AC

nên AD*AC=AM^2

ΔANB vuông tại N có NE vuông góc AB

nên AE*AB=AN^2

=>AM=AN