K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2016

1/

a/ Ta có : GA = GB ; HA = HC

=> GH là đường trung bình của tam giác ABC

b/ Vì GH là đường trung bình nên GH // BC

=> GHCB là hình thang

c/ Ta có : \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)

\(\Rightarrow GH=\frac{1}{2}BC=\frac{5}{2}\) 

d/ Hình thang nào cân?

28 tháng 10 2021

có chứ sao ko hihi

29 tháng 10 2021

có chứ

a: Xét ΔABC có

M là trung điểm của BA
N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

=>MN=BE và MN//BE

=>BMNE là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là đường trung tuyến

nên HM=AM

=>M nằm trên đường trung trực của AH(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2=AN

=>N nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra MN là đường trung trực của AH

Xét ΔABC có 

M là trung điểm của AB

E là trung điểm của BC

Do đó: ME là đường trung bình

=>ME=AC/2

mà HN=AC/2

nên ME=HN

Xét tứ giác MNEH có MN//EH

nên MNEH là hình thang

mà ME=NH

nên MNEH là hình thang cân

7 tháng 8 2016

a) Xét tam giác AMN và tam giác CMD có:

       MN = MD ( M là trung điểm của ND)

       Góc NMA = góc DMC ( đối đỉnh)

       MA = MC ( M là trung điểm của AC )

   => tam giác AMN  = tam giác CMD ( c-g-c)

   => Góc NAM = góc DCM ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong => AN//DC=> AB//DC ( vì A, N, B là 3 điểm tạo nên cùng 1 đường thẳng).

b) Ta có: AN = DC ( tam giác AMN = tam giác CMD)

       Mà  AN = NB ( N là trung điểm của AB)

        => DC = NB

    Xét tam giác NCB và tam giác CND có:

        NC là cạnh chung

        Góc BNC = góc DCN( so le trong, NB//DC)

        NB = DC (cmt) 

    => tam giác NCB =  tam giác CND ( c-g-c)

    => Góc BCN = góc DNC ( 2 góc tương ứng)

  Mà 2 góc này ở vị trí so le trong => ND//BC=> ND//BE

c) Ta có: ND//BE(cmt)=> NM//BC=> BCMN là hình thang (1)

    Ta có: AB = AC (gt)

        => Góc ABC = góc ACB ( quan hệ giữa góc và cạnh đối diện)

        => Góc NBC = góc MCB (2)

   Từ (1) và (2) => BCMN là hình thang cân

Xét tam giác AMD và tam giác CMN có:

    MA = MC ( M là trung điểm của cạnh AC)

    Góc DMA  = góc NMC ( đối đỉnh)

    MN = MD ( M là trung điểm của cạnh ND)

  => Tam giác AMD = tam giác CMN (c-g-c)

  => Góc DAM = góc NCM ( 2 góc tương ứng)

 Mà 2 góc này ở vị trí so le trong => AE//NC => ANCE là hình thang

d) BD>NE