K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEDF có \(\widehat{AED}+\widehat{AFD}=90^0+90^0=180^0\)

nên AEDF là tứ giác nội tiếp

=>\(\widehat{AEF}=\widehat{ADF}\)

mà \(\widehat{ADF}=\widehat{ACB}\left(=90^0-\widehat{FDC}\right)\)

nên \(\widehat{AEF}=\widehat{ACB}\)

mà \(\widehat{AEF}+\widehat{BEF}=180^0\)(hai góc kề bù)

nên \(\widehat{BEF}+\widehat{BCF}=180^0\)

=>BEFC nội tiếp

28 tháng 7 2019

Gợi ý:  A F E ^ = A H E ^  (tính chất hình chữ nhật và  A H E ^ = A B H ^  (cùng phụ  B H E ^ )

24 tháng 2 2023

Ta có: \(\widehat{C_1}=\widehat{A_1}\)(cùng phụ với \(\widehat{B_1}\)\(\left(1\right)\)

Xét tứ giác AEHF có: \(\widehat{A}=\widehat{E}=\widehat{F}=\widehat{H}=90^o\)

=> tứ giác AEHF là h.c.n

=> \(\widehat{A_1}=\widehat{E_1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{E_1}=\widehat{C_1}\)

vì \(\widehat{E_1}+\widehat{BEF}=180^o\)

\(\Rightarrow\widehat{C_1}+\widehat{BEF}=180^o\) mà 2 góc đối nhau

=> tứ giác BEFC nội tiếp

17 tháng 12 2023

a: Xét tứ giác MNBD có

\(\widehat{BDM}+\widehat{BNM}=90^0+90^0=180^0\)

=>MNBD là tứ giác nội tiếp

=>\(\widehat{NBD}+\widehat{NMD}=180^0\)

mà \(\widehat{NBD}+\widehat{ABC}=180^0\)(hai góc kề bù)

nên \(\widehat{NMD}=\widehat{ABC}\left(1\right)\)

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AMC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AMC}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{NMD}=\widehat{AMC}\)

=>\(\widehat{NMA}=\widehat{CMA}\)

=>MA là phân giác của góc NMC

b: Ta có: NBDM là tứ giác nội tiếp

=>\(\widehat{DBM}=\widehat{DNM}\)

=>\(\widehat{MBC}=\widehat{ENM}\left(3\right)\)

Xét (O) có

\(\widehat{MBC}\) là góc nội tiếp chắn cung MC

\(\widehat{MAC}\) là góc nội tiếp chắn cung MC

Do đó: \(\widehat{MBC}=\widehat{MAC}\left(4\right)\)

Từ (3) và (4) suy ra \(\widehat{ENM}=\widehat{MAC}\)

=>\(\widehat{ENM}=\widehat{EAM}\)

=>ANME là tứ giác nội tiếp

=>\(\widehat{AEM}+\widehat{ANM}=180^0\)

=>\(\widehat{AEM}=90^0\)

=>ME\(\perp\)AC

a) Xét tứ giác KEDC có 

\(\widehat{KEC}=\widehat{KDC}\left(=90^0\right)\)

\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc cùng nhìn cạnh KC

Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

30 tháng 5 2018

A B C D E O F

\(\widehat{\text{AFB}}=\widehat{ADB}=90^0\)

Mà ÀB và ADB là hai góc kề cùng nhìn AB dưới hai góc bằng nhau => ÀDB nội tiếp

b) ta có \(\widehat{ACB}=\widehat{AEB}\)( cùng chắn cung AB)

\(\widehat{DFC}=\widehat{BAF}\)( trong tứ giác nội tiếp góc ngaoif tại một đỉnh bằng góc trong đỉnh còn lại )

\(\Rightarrow\widehat{ACB}+\widehat{FDC}=\widehat{BAF}+\widehat{BAE}=90^0\)

\(\Rightarrow DF\perp CA\)

15 tháng 4 2020

dĐAEDƯÈWEWÈWÉWÈWẺ3GWDFCEWFSCAWECFASEFSAD

a: góc AEB=góc AHB=90 độ

=>AEHB nội tiếp

Xét ΔAHB vuông tại H và ΔACD vuông tại C có

góc ABH=góc ADC

=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE

=góc ABE+90 độ-góc HAB

=90 độ

=>HE vuông góc AC

=>HE//CD