K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2023

(a) Gọi \(O'\) là tâm đường tròn ngoại tiếp tứ giác \(AIFE.\)

Ta có : \(\hat{IEF}=\hat{IAF}\) (\(AIFE\) nội tiếp đường tròn \(\left(O'\right)\)) hay \(\hat{IEF}=\hat{IAB}.\)

Mà : \(\hat{IAB}=\hat{ICB}\) (hai góc nội tiếp đường tròn \(\left(O\right)\) cùng chắn cung \(IB\)).

Do đó, \(\hat{IEF}=\hat{ICB}.\)

Ta cũng có : \(\hat{FIE}=\hat{FAE}\) (\(AIFE\) nội tiếp đường tròn \(\left(O'\right)\)) hay \(\hat{FIE}=\hat{BAC}.\)

Mà : \(\hat{BAC}=\hat{BIC}\) (hai góc nội tiếp đường tròn \(\left(O\right)\) cùng chắn cung \(BC\)).

Do đó, \(\hat{FIE}=\hat{BIC}.\)

Xét \(\Delta IBC,\Delta IFE:\left\{{}\begin{matrix}\hat{ICB}=\hat{IEF}\left(cmt\right)\\\hat{BIC}=\hat{FIE}\left(cmt\right)\end{matrix}\right.\Rightarrow\Delta IBE\sim\Delta IFE\left(g.g\right)\) (đpcm).

 

(b) Mình tạm thời chưa nghĩ ra nhé:)

18 tháng 5 2018

a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800

=> Tứ giác BEHF nội tiếp.

b, Xét tứ giác AFEC có :

góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)

=> Tứ giác AFEC nội tiếp

1 tháng 3 2019

Giải: 
Câu a) 
- 2 tam giác vuông ∆ADC và ∆BEC, có góc ADC = góc BEC = 90°, và 2 tam giác vuông này có chung góc C. Từ đây, suy ra => tam giác ∆ADC và tam giác ∆BEC đồng dạng (theo dạng tam giác đồng dạng: góc - góc - góc). Vì ∆ADC và ∆BEC đồng dạng nhau, nên ta có tỷ lệ: DC:EC = AC:BC. 
Từ đây, suy ra: DC:AC = CE:BC (1). 
Vì tam giác ∆ABC và ∆EDC có chung góc C, và vì kết quả ở (1), nên ta suy ra: ∆ABC và ∆EDC đồng dạng. Từ đây, ta biết được: góc DEC = ABC và góc EDC = góc BAC. 
Mà, góc AED + góc DEC = 180° => góc AED + góc ABC = 180° => tứ giác ABDE nội tiếp được một đường tròn (Theo tính chất của tứ giác nội tiếp: 2 góc đối bù nhau). 

Câu b) 
Chứng minh tương tự như câu a), ta sẽ có: 
∆DEC đồng dạng ∆DBF đồng dạng ∆AEF (1) 
Từ (1), ta suy ra: góc AEF = góc DEC, mà góc BEA = góc BEC = 90°, nên ta tính được góc BEF = góc BED, suy ra => BE là đường phân giác góc DEF. 
Giải tương tự như trên, ta sẽ chứng minh được AD, CF lần lượt là đường phân giác của các góc FDE và góc DFE. 
Từ đó, suy ra => H là tâm đường tròn nội tiếp tam giác DEF. 

a: góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

góc BFC=góc BEC=90 dộ

=>BFEC nội tiếp

b: góc FEB=góc BAD

góc DEB=góc FCB

mà góc BAD=góc FCB

nên góc FEB=góc DEB

=>EB là phân giác của góc FED

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>FE vuông góc OA

=>OA vuông góc IK

a, Gọi I là trung điểm của BC 

Tam giác BEC vuông tại E trung tuyến EI nên IE = IB = IC 

Tam giác BFC vuông tại F trung tuyến FI nên IF = IB = IC

Vậy tứ giác BEFC cùng thuộc đường tròn tâm I bán kính IB 

b,  Ta có :

\(\widehat{ACK}=90^0\) ( góc nội tiếp chắn nửa đường tròn )

= > BH // CK ( cùng vuông góc với AC )

Tương tự ta cũng có CH // BK 

= > BHCK là hình bình hành

= > 2 đường chéo cắt nhau tại trung điểm của mỗi đường

Mà I là trung điểm của BC 

= > H,I,K thẳng hàng ( đpcm )

c, Dễ thấy các tứ giác AFHE và BFHD nội tiếp nên :

\(\widehat{DFE}=\widehat{DFH}+\widehat{HFE}=\widehat{HBD}+\widehat{HAF}=2\widehat{HBD}=2.\left(90^0-\widehat{C}\right)=180^0-2\widehat{C}\)

( Do góc HBD và HAF cùng phụ với góc C )

Lại có :

Tam giác EIC cân tại I nên :

\(\widehat{EIC}=180^0-\widehat{IEC}-\widehat{ECI}=180^0-2\widehat{C}\)

\(=>\widehat{EIC}=\widehat{DFE}\)

= > Tứ giác DFEI là tứ giác nội tiếp 

= > D,F,E,I cùng thuộc 1 đường tròn