Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F H K N M P 1 2 1 1
a)
Ta có: \(\widehat{NKE}=\widehat{KHE}+\widehat{E_1}\)(góc ngoài \(\Delta\)KHE)
\(\Delta\)AHE vuông tại E có: N là trung điểm AH => \(NE=NH=\frac{1}{2}AH\)
Tam giác NEH cân tại N => \(\widehat{NEH}=\widehat{NHE}=\widehat{KHE}\)
Mà \(\widehat{NKB}=\widehat{KHE}+\widehat{E_1}\)
\(\widehat{NED}=\widehat{NEH}+\widehat{E_2}\)
\(\Rightarrow\widehat{NEK}=\widehat{NED}\)
\(\Rightarrow\Delta\)NEK đồng dạng \(\Delta NED\)
=> \(\frac{NE}{ND}=\frac{KE}{ED}\)
Do E là phân giác \(\widehat{DEF}\)=> \(\frac{HK}{HD}=\frac{NH}{ND}\)(đpcm)
b) Định lý Ceva PD,MH,KB đồng quy khi \(\frac{MB}{BD}\cdot\frac{DH}{HK}\cdot\frac{KP}{PM}=1\)
By: Đỗ Quang Thiều (refundzed)
Câu b) chi tiết hơn và sử dụng kiến thức lớp 9
Từ cái tỉ số ở câu đầu
Ta CM đc: \(MK//BH\)
\(\Leftrightarrow\widehat{FPK}=\widehat{MPB}=\widehat{ABE}=\widehat{ACF}=\widehat{FDH}\)
Nên PFKD là tứ giác nội tiếp
Suy ra: \(\widehat{PDK}=\widehat{AFE}=\widehat{AHE}=\widehat{BHD}=\widehat{PKD}\)
Cho nên tam giác PKD cân tại P
=> PK=PD
Từ đây hiển nhiên PM=PK hay \(\frac{PK}{PM}=1\)
Xét tích: \(\frac{MB}{BD}\cdot\frac{DH}{HK}\cdot\frac{KP}{PM}=\frac{HK}{DH}\cdot\frac{DH}{HK}\cdot\frac{KP}{PM}=1\)
Theo Ceva đảo thì đồng quy
*OLM đang lỗi nên không vẽ được hình, bạn vào thống kê mình để xem hình nhé! Mình vẽ ở GeoGebra*
a \(\hept{\begin{cases}S_{BHC}=\frac{1}{2}\cdot BC\cdot HD\\S_{ABC}=\frac{1}{2}\cdot BC\cdot AD\end{cases}}\Rightarrow\frac{HD}{AD}=\frac{S_{BHC}}{S_{ABC}}\)
Tương tự cũng có: \(\hept{\begin{cases}\frac{HE}{BE}=\frac{S_{AHC}}{S_{ABC}}\\\frac{HF}{CF}=\frac{S_{AHB}}{S_{ABC}}\end{cases}}\)
\(\Rightarrow\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
b) Xét \(\Delta BHD\) và \(\Delta BCE\)có:
\(\widehat{B}\)chung
\(\widehat{BDH}=\widehat{BEC}=90^o\)
=> \(\Delta BHD\)đồng dạng với \(\Delta\)BEC (g.g)
=> \(\frac{BH}{BC}=\frac{BD}{BE}\Rightarrow BH\cdot BE=BC\cdot BD\left(1\right)\)
Cmtt: \(\Delta CHD\)đồng dạng \(\Delta CBF\)(g.g)
=> \(\frac{CH}{CB}=\frac{CD}{CF}\Rightarrow CH\cdot CF=CB\cdot CD\left(2\right)\)
Từ (1) (2) => \(CH\cdot CF+BH\cdot BE=BC\cdot BD+CD\cdot CB=BC^2\)
c) \(\widehat{HDC}=\widehat{HEC}=90^o\)
=> Tứ giác HDCE nội tiếp
=> \(\widehat{HED}=\widehat{HCD}\)(3)
\(\widehat{AFH\:}=\widehat{AEH}=90^o\)
=> AFHE nội tiếp
=> \(\widehat{FEH}=\widehat{FAH}\left(4\right)\)
Mà \(\widehat{FAH}=\widehat{HCD}\) (cùng phụ \(\widehat{ABC}\)) (5)
(3)(4)(5)=> \(\widehat{FEH}=\widehat{HED}\)
=> EH là phân giác \(\widehat{FED}\)
Cmtt cũng được: DH là phân giác \(\widehat{FDE}\)và FH là phân giác \(\widehat{DFE}\)
=> H là tâm đường tròn nội tiếp tam giác EFD
=> H cách đều EF; FD; ED
d) Gọi O là giao của phân giác \(\widehat{BHC}\)và trung trực của CH. Theo gt thì điểm O cố đnhj
Ta có: OH=OC => \(\Delta\)HOC cân tại O => \(\widehat{CHO}=\widehat{HCO}\)
Mà \(\widehat{BHO}=\widehat{CHO}\)nên \(\widehat{MHO}=\widehat{NCO}\)
=> \(\Delta OMH=\Delta ONC\left(cgc\right)\)
=> OM=ON
=> O thuộc đường trung trực của MN, hay đường trung trực của MN luôn đi qua 1 điểm cố định
@qu y nh Bạn có thể làm ý c theo cách khác giúp mk đc không ạ!!! Mk chưa học tứ giác nội tiếp(Nội dung lớp 9)
A B C F E H
\(\Delta ABH\) và \(\Delta ABD\) có chung đường cao kẻ từ \(B\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}\) (1)
\(\Delta AHC\) và \(\Delta ADC\) có chung đường cao kẻ từ \(C\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{AHC}}{S_{ADC}}\) (2)
Từ (1) và (2) suy ra
\(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}=\frac{S_{AHC}}{S_{ADC}}=\frac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\frac{S_{ABH}+S_{ACH}}{S_{ABC}}\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
CMTT \(\frac{BH}{BE}=\frac{S_{ABH}+S_{BCH}}{S_{ABC}}\)
\(\frac{CH}{CF}=\frac{S_{ACH}+S_{BCH}}{S_{ABC}}\)
Cộng vế với vế của các bất đẳng thức trên ta được :
\(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}=\frac{2\left(S_{ABH}+S_{ACH}+S_{BCH}\right)}{S_{ABC}}=\frac{2S_{ABC}}{S_{ABC}}=2\left(đpcm\right)\)
Chúc bạn học tốt !!!
#) Mn giúp hộ bài này vs ạ :3
Cần gấp lắm ->.<
A B C E D F G N M
Theo bài ra:
G là trọng tâm tam giác ABC
Có \(BG=\frac{2}{3}BE\) mà \(BM=\frac{1}{3}BE\)=> \(BG=2.BM\)=> M là trung điểm BG
Có: \(CG=\frac{2}{3}CF\)mà \(CN=\frac{1}{3}CF\)=> \(CG=2.CN\)=> N là trung điểm CG
Xét tam giác GBC có: GD, BN, CM là 3 đường trung tuyến
=> GD, BN, CM đồng quy
mà A thuộc đường thẳng GD
=> AD; BN; CM đồng quy.