K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

3 tháng 3 2021

A B C D E F H K M I G

a) Ta có:

\(\left\{{}\begin{matrix}BH\perp AC\\KC\perp AC\end{matrix}\right.\)       ⇒ \(BH\text{//}KC\) 

\(\left\{{}\begin{matrix}CH\perp AB\\BK\perp AB\end{matrix}\right.\)       ⇒ \(CH\text{//}BK\)

\(Xét\) \(tứ\) \(giác\) \(BKCH\) \(có:\) \(\left\{{}\begin{matrix}BH\text{//}KC\\CH\text{//}BK\end{matrix}\right.\)

⇒ Tứ giác \(BKCH\) là hình hình hành. Mà M là trung điểm của đường chéo BC

⇒ \(\left\{{}\begin{matrix}H,M,K_{ }thẳng_{ }hàng\\HM=MK\end{matrix}\right.\)

Xét \(\Delta AHK\) có: \(\left\{{}\begin{matrix}AI=IK\left(gt\right)\\HM=MK\left(cmt\right)\end{matrix}\right.\)

⇒ \(IM\) là đường trung bình của \(\Delta AHK\)

⇒ \(IM=\dfrac{1}{2}AH\)              \(\left(ĐPCM\right)\)

c)

Ta có:

\(\dfrac{S_{\Delta HBC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HD.BC}{\dfrac{1}{2}.AD.BC}=\dfrac{HD}{AD}\)  

\(\dfrac{S_{\Delta HAC}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HE.AC}{\dfrac{1}{2}.BE.AC}=\dfrac{HE}{BE}\)

\(\dfrac{S_{\Delta HBA}}{S_{\Delta ABC}}=\dfrac{\dfrac{1}{2}.HF.AB}{\dfrac{1}{2}.CF.AB}=\dfrac{HF}{CF}\)

⇒ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{\Delta HBC}+S_{\Delta HAC}+S_{\Delta HAB}}{S_{\Delta ABC}}=\dfrac{S_{\Delta ABC}}{S_{\Delta ABC}}\)

⇔ \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)          \(\left(ĐPCM\right)\)

 

a: Xét tứ giác BHCK có

M là trung điểm chung của BC và HK

=>BHCK là hình bình hành

b: Xét tứ giác AFHE có

\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

=>AFHE là tứ giác nội tiếp đường tròn đường kính AH

=>AFHE nội tiếp (I)

=>IF=IE

=>I nằm trên đường trung trực của FE(1)

Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp đường tròn đường kính BC

=>BFEC nội tiếp (M)

=>MF=ME

=>M nằm trên đường trung trực của FE(2)

Từ (1) và (2) suy ra IM là đường trung trực của FE

=>IM\(\perp\)FE

Xét ΔHAK có

I,M lần lượt là trung điểm của HA,HK

=>IM là đường trung bình của ΔHAK

=>IM//AK

Ta có: IM//AK

IM\(\perp\)FE

Do đó: FE\(\perp\)AK

18 tháng 1 2024

làm hơi dài với mình cần phần c thôi nhé

25 tháng 11 2019

A B C M D E H K O I

a) Xét tứ giác ADME có \(\widehat{DAE}=\widehat{AEM}=\widehat{ADM}=90^0\)

=> ADME là hình chữ nhật

=> AM= DE

b) Gọi O là giao điểm của AM và DE => OA = OM = OD = OE (2)

Do ADME là HCN => DA = ME

=> 2DA = 2ME hay DA + AI = EM + MK (vì DA = AI; ME = MK)

=> DI = EK

Xét tứ giác DIEK có DI = EK (cmt)

     DI// EK (vì CEMD là HCN)

=> DKEI là hình bình hành

Do O là trung điểm của DE => KI đi qua O

=> DE cắt IK tại O và OD = OE;  OK = OI (1) 

Từ (1) và (2) => DE; AM; IK đồng quy tại trung điểm O của mỗi đường

c) don't know, tự làm