K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAB'B vuông tại B' và ΔAC'C vuông tại C' có 

\(\widehat{BAB'}\) chung

Do đó: ΔAB'B\(\sim\)ΔAC'C(g-g)

Suy ra: \(\dfrac{AB'}{AC'}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AB'}{AC'}=1\)

Suy ra: AB'=AC'

Ta có: AC'=AB'

AB=AC

Do đó: \(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)

Xét ΔAC'B' và ΔABC có 

\(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)(cmt)

\(\widehat{C'AB'}\) chung

Do đó: ΔAC'B'\(\sim\)ΔABC(c-g-c)

12 tháng 1 2021

Đây là định lý Ceva nhé bạn!

Giả sử AA', BB', CC' đồng quy tại O.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{A'B}{A'C}=\dfrac{S_{OA'B}}{S_{OA'C}}=\dfrac{S_{AA'B}}{S_{AA'C}}=\dfrac{S_{AA'B}-S_{OA'B}}{S_{AA'C}-S_{OA'C}}=\dfrac{S_{OAB}}{S_{OAC}}\).

Chứng minh tương tự: \(\dfrac{B'C}{B'A}=\dfrac{S_{OBC}}{S_{OBA}};\dfrac{C'A}{C'B}=\dfrac{S_{OAC}}{S_{OBC}}\).

Nhân vế với vế của các đẳng thức trên ta có đpcm.

P/s: Ngoài ra còn có các cách khác như dùng định lý Thales,..)

11 tháng 4 2017

a) \(\dfrac{S_{HBC}}{S_{ABC}}=\dfrac{\dfrac{1}{2}.HA'.BC}{\dfrac{1}{2}.AA'.BC}=\dfrac{HA'}{AA'}\)

Tương tự: \(\dfrac{S_{HAB}}{S_{ABC}}=\dfrac{HC'}{CC'};\dfrac{S_{HAC}}{S_{ABC}}=\dfrac{HB'}{BB'}\)

\(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=\dfrac{S_{HBC}}{S_{ABC}}+\dfrac{S_{HAC}}{S_{ABC}}+\dfrac{S_{HAB}}{S_{ABC}}=\dfrac{S_{HAB}+S_{HAC}+S_{HAB}}{S_{ABC}}=\dfrac{S_{ABC}}{S_{ABC}}=1\)

b) Áp dụng tính chất đường phân giác vào các tam giác: ADC; ABI; AIC, ta có:

\(\dfrac{BI}{IC}=\dfrac{AB}{AC};\dfrac{AN}{NB}=\dfrac{AI}{BI};\dfrac{CM}{MA}=\dfrac{IC}{AI}\)

\(\dfrac{BI}{IC}.\)\(\dfrac{AN}{AB}.\)\(\dfrac{CM}{MA}=\dfrac{AB}{AC}.\)\(\dfrac{AI}{BI}.\)\(\dfrac{IC}{AI}=\dfrac{AB}{AC}.\)\(\dfrac{IC}{BI}\)

\(\Rightarrow BI.AN.CM=BN.IC.AM\)