Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB= AC( 2 cạnh bên của tam giác ABC cân tại A)
=> 1/2 AB = 1/2 AC
=> MB = MC
xét tam giác MBC và tam giác NCB
có : BC chung
góc MBC= góc NCB
MB = NC
Vậy tam giác MBC bằng tam giác NCB
B)vì BM và CN đều là trung tuyến và đề cắt nhau tại I => I là trọng tâm
=> AI là trung tuyến
Tam giác ABC cân tại A có AI là trung tuyến
=> AI là phân giác của góc BAC
C) => AI vuông góc BC
cho tam giác abc cân tại a và 2 đường trung tuyến bm, cn cắt nhau tại K
a) chứng minh: tam giác bnc = tam giác cmb
b) chứng minh tam giác bkc cân tại K
c) chứng minh BC< 4km
a: Xét ΔBNC và ΔCMB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó: ΔBNC=ΔCMB
b: Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)
nên ΔKBC cân tại K
cho tam giac abc can tai a va 2 duong trung tuyen bm,cn cat nhau tai k
a) Cm:tam giac bnc=tam giac cmb
b)Cm:tam giac bkc can tai k
c)Cm:bc<4km
ta có tg ABC cân ở A => AB=AC (t/c)
mà BM,CN là đường Trung tuyến
=> AN=NB , AM = MC
khi đó : BN = \(\dfrac{1}{2}\)AB và MC=\(\dfrac{1}{2}AC\)
=> BN=MC
xét ΔBNC và ΔCMB có
BN =MC (CMT)
\(\widehat{NBC}=\widehat{MCB}\) (t/c tam giác cân )
BC : cạnh chunh
=> ΔBNC = ΔCMB (g.c.g)
Ta có: Tam giác ABC cân tại A => AB = AC
=>AB/2 = AC/2
=> NB=MC
Xét tam giác BNC và tam giác CMB có
NB = MC ( cmt)
góc B = góc C
BC cạnh chung
=> tam giác BNC = tam giác CMB ( cạnh - góc - cạnh )
Mệt quá câu A thôi nha !