K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:

Do 2 đường cao $BE, CF$ cắt nhau tại $H$ nên $H$ là trực tâm của tam giác $ABC$.

Khi đó, nếu $AH$ cắt $BC$ tại $K$ thì $AK$ cũng vuông góc với $BC$

Áp dụng định lý Pitago:

$AK^2+BK^2=AB^2$

$AK^2+CK^2=AC^2$

$\Rightarrow AB^2-AC^2=BK^2-CK^2(1)$

Tiếp tục áp dụng Pitago:

$KH^2+BK^2=BH^2$
$KH^2+CK^2=CH^2$

$\Rightarrow BH^2-CH^2=BK^2-CK^2(2)$

Từ $(1); (2)\Rightarrow AB^2-AC^2=BH^2-CH^2$
$\Rightarrow AB^2+CH^2=AC^2+BH^2$ (đpcm)

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Hình vẽ:

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0
10 tháng 4 2018

a) vì DI là đường trung trực của BC

 suy ra {DI vuông góc vs BC tại I 

            {góc DIB = góc DIC=90độ IB=IC( gt)

xét tam giác DIB và tam giác DIC có 

IB=IC(gt)

góc DIB=góc DIC=90độ

ADI là cạnh chung 

suy ra tam giác DIB = tam giác DIC (c.g.c)

suy ra DC=DB (2 cạnh tương ứng )

xét tam giác ABC có : DC=DB(chứng minh trên)

suy ra tam giác DBC cân tại D

18 tháng 3 2020

Câu hỏi này mà là linh tinh hả bạn( è)

14 tháng 2 2022

a) Xét tam giác ABE vuông tại E và tam giác ACF vuông tại F có:

\(\hept{\begin{cases}BAC+ABE=90\\BAC+ACF=90\end{cases}}\)  => ABE=ACF

 => 180-ABE=180-ACF    =>ABG=HCA

Xét tam giác AGB và tam giác HAC có:

AB=HC (gt)

ABG=HCA (CMT)

GB=AC (gt)

=> Tam giác AGB= Tam giác HAC (c.g.c) (ĐPCM)

=>AG=HA (hai góc tương ứng )  => Tam giác AGH cân tại A (1)

=> GAB=AHC (hai góc tương ứng)

Xét tam giác AFH vuông tại F có :

FAH+AHC=90 (định lí tổng 3 goác 1 tam giác )

=> FAH+GAB=90 (vì GAB=AHC cmt)

=>GAH=90  (2)  Từ (1) và (2) suy ra: AGH vuông cân tại A (ĐPCM)

b) 1)Theo a, có: Tam giác AGB= Tam giác HAC

=> AG=HA ( hai cạnh tương ứng)

=> Tam giác AGH cân tại A

Mà M là trung điểm của GH   => AM là trung tuyến đồng thời là đường cao 

=> AM vuông góc với GH 

=> AMN=90    =>Tam giác MIN vuông tại M

=>MIN+IMN+MNI=180 (định lí tổng ba góc 1 tam giác)

=>MNI=180-90-MIN=90-MIN (1)

Gọi giao điểm của AO và BC là K, giao điểm của AM và BC là I

Vì O là giao điểm hai đường vuông góc BE và CF của tam giác ABC nên AO là đường vuông góc thứ ba của tam giác này

=> AKN=90   => Tam giác AKI vuông tại K

=> IAK+AKI+AIK=180

=>IAK=180-90-AIK=90-AIK (2)

Từ (1) và (2) có: MNI=90-MIN, IAK=90-AIK

Mà MIN và AIK đối đỉnh => MNI=IAK   =>BNG=OAM (ĐPCM)

2) Ta có AB < AC mà AC = BG                             

=> AB < BG                                                           

=>AGB < GAB mà AGB = HAC (câu a)                     

=>HAC < GAB (1)

Tam giác AGH cân tại A, đường trung tuyến AM       

=> GAM = HAM (2).

Từ (1) và (2) => BAM = GAM - GAB < HAM - HAC = MAC (ĐPCM)