Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C K H E I
a) Xét \(\Delta\)BAE và \(\Delta\)BCE:
BA = BC
BAC^ = BCE^
EA = EC
=> \(\Delta\)BAE = \(\Delta\)BCE (c.g.c)
b) Xét \(\Delta\)AKE và \(\Delta\)CHE :
AKE^ = CHE^ = 90o
EA = EC
KAE^ = HCE^
=> \(\Delta\)AKE= \(\Delta\)CHE (cạnh huyền_góc nhọn)
c) Ta có: \(\Delta\)BAE = \(\Delta\)BCE (cmt)
=> ABE^ = CBE^ (2 góc tương ứng)
Xét \(\Delta\)BKE và \(\Delta\)BHE:
BKE^ = BHE^ = 90o
KBE^ = HBE^ (cmt)
BE chung
=> \(\Delta\)BKE= \(\Delta\)BHE (cạnh huyền_góc nhọn)
=> BK = BH (2 cạnh tương ứng)
=> \(\Delta\)BKH cân tại B
\(\Rightarrow BKH=BHK=\frac{180o-B}{2}\) (1)
Mà trong \(\Delta\)ABC: \(BCA=\frac{180o-B}{2}\) (2)
Từ (1) và (2) => BHK^ = BCA^
Mà BHK^ và BCA^ ở vị trí đồng vị
=> KH // AC
(Lúc nào có bài thì gọi mk nha. Nếu có khả năng thì mk giải cho. Với lại.....................mk ko lên đây để kiếm điểm nhé ^^! Nên bạn không cần quan trọng chuyện đó quá đâu.)
xét tam giác BAE và tam giác BCE có:
BE chung
AE=EC( E là trung điểm AC)
BA=BC(tam giác ABC cân)
=>tam giác BAE= tam giác BCE(c.c.c)
b)xét tam giác AKE và tam giác CHE có :
AE=EC
góc A= góc C
góc AKE= góc CHE=90 độ
=>tam giác AKE= tam giác CHE (cạnh huyền -góc nhọn )
c) có BA-AK=BK
BC-CH=BH
mà BA=BC(tam giác ABC cân) ;CH=AK( Do 2 tam giác = nhau ở câu b)
=>BH=BK
=>tam giác BKH cân tại B=>gócBK=BHK=\(\frac{180-B}{2}\)(1)
tam giác ABC cân tại B=>góc A=góc C=\(\frac{180-B}{2}\)(2)
từ (1) và(2)=>góc A= góc BKH
mà 2 góc này ở vị trí đồng vị=>KH // AC
a) Vì EH ⊥ BC ( gt )
⇒ △ BHE vuông tại H
Xét tam giác vuông BAE và tam giác vuông BHE có :
BE chung
\(\widehat{B_1}=\widehat{B_2}\) ( BE là tia phân giác của \(\widehat{BAC}\))
⇒ △ BAE = △ BHE ( cạnh huyền - góc nhọn )
b) Gọi I là giao điểm của AH và BE
Xét △ ABI và △ HBI có :
BA = BH [ △ BAE = △ BHE (cmt) ]
\(\widehat{B_1}=\widehat{B_2}\) ( BE là tia phân giác của \(\widehat{BAC}\) )
BI chung
⇒ Δ ABI = Δ HBI ( c.g.c )
⇒ \(\widehat{AIB}=\widehat{AIH}\) ( 2 góc tương ứng )
Mà \(\widehat{AIB}+\widehat{AIH}\) = 1800 ( 2 góc kề bù )
⇒ \(\widehat{AIB}=\widehat{AIH}\) = 900
⇒ BI ⊥ AH (1)
Ta có: IA = IH ( Δ ABI = Δ HBI ( cmt )
Mà I nằm giữa hai điểm A và H (2)
⇒ I là trung điểm của AH ( 3)
Từ (1) (2) (3) ⇒ BI là trung trực của AH
Hay BE là trung trực của AH
c) Xét Δ KAE và Δ CHE có:
\(\widehat{KAE}=\widehat{CHE}\) ( = 900 )
AE = HE ( Δ BAE = Δ BHE (cmt)
\(\widehat{AEK}=\widehat{HEC}\) ( 2 góc đối đỉnh )
⇒ Δ KAE = Δ CHE ( g.c.g )
⇒ EK = EC ( 2 cạnh tương ứng )
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: Ta có: ΔBAE=ΔBHE
nên BA=BH và EA=EH
hay BE là đường trung trực của AH
a) xét tam giác ABH và tam giác ACH có
Góc AHB =Góc AHC =90 độ
AB =AC ( do tam giác abc cân)
Góc B = góc C (do tam giác abc cân)
=> tam giác ABH = tam giác ACH ( cạnh huyền, góc nhọn)
=>HB= HC (hai cạnh tương ứng bằng nhau)
b) Xét tam giác MAK và tam giác MCK có
AK=KH( gì)
Góc AKB = GÓC CKB=90 độ
MK chung
=>tam giác MAK = tam giác MCK( c. g. c)
=> MA=CM( hai cạnh tương ứng)
c) từ tam giác mak = tam giác MCK ( câu b)
=>góc MAK = góc C (..)
TA CÓ tam giác abc cân ở A =>góc B = góc C
=>góc Abc = góc Mak
d) cậu xem lại đề phần này đi nha mik thấy nó sai cái j đó
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH
=> điểm B, E cách đều 2 mút của đoạn thẳng AH
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
Bạn tự vẽ hình nha!!!
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
Bạn tự vẽ hình nha
AD = AB + BD
AE = AC + CE
mà AB = AC (tam giác ABC cân tại A)
BD = CE (gt)
=> AD = AE
HAE = HAB + BAE
KAD = KAC + CAD
mà HAB = KAC (tam giác AHB = tam giác AKC)
=> HAE = KAD
Xét tam giác AHE và tam giác AKD có:
AD = AE (chứng minh trên)
HAE = KAD (chứng minh trên)
AH = AK (tam giác AHB = tam giác AKC)
=> Tam giác AHE = Tam giác AKD (c.g.c)
Chúc bạn học tốt