Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta biết trong 1 tam giác, 3 đường trung tuyến đồng quy tại một điểm. Do đó trung tuyến $CP$ cắt $MP,BN$ tại $Q$ tại $G$ hay $P,G,C$ thẳng hàng.
Có: \(\frac{BP}{PA}=\frac{MB}{MC}(=1)\) nên theo định lý Ta-let đảo thì \(PM\parallel AC\)
hay \(\Rightarrow QM\parallel NC; PQ\parallel AN\)
Áp dụng hệ quả của định lý Ta-let:
\(\triangle BNC; QM\parallel NC\Rightarrow \frac{QM}{NC}=\frac{BQ}{BN}\)
\(\triangle ABN; PQ\parallel AN\Rightarrow \frac{PQ}{AN}=\frac{BQ}{BN}\)
\(\Rightarrow \frac{QM}{NC}=\frac{PQ}{AN}\). Mà \(AN=NC\Rightarrow QM=QP\)
\(\Rightarrow QM=\frac{1}{2}PM\)
Do đó: \(\frac{S_{GMQ}}{S_{GPM}}=\frac{QM}{PM}=\frac{1}{2}(1)\)
\(\frac{S_{GPM}}{S_{MPC}}=\frac{PG}{PC}=\frac{1}{3}(2)\) (theo tính chất trung tuyến và trọng tâm)
\(\frac{S_{MPC}}{S_{CPB}}=\frac{MC}{BC}=\frac{1}{2}(3)\)
\(\frac{S_{CPB}}{S_{CAB}}=\frac{PB}{AB}=\frac{1}{2}(4)\)
Từ \((1);(2);(3);(4)\Rightarrow \frac{S_{GPM}}{S_{CAB}}=\frac{1}{2}.\frac{1}{3}.\frac{1}{2}.\frac{1}{2}=\frac{1}{24}\)
\(\Rightarrow S_{ABC}=24S_{GMQ}=24.10=240(cm^2)\)
Kẻ MK//BD
Xét ΔBDC có
M là trung điểm của CB
MK//BD
Do đó: K là trung điểm của CD
=>CK=KD=1/2CD=1/3AC=AD
Xét ΔAMK có
D là trung điểm của AK
DI//MK
Do đó: I là trung điểm của AM
Xét ΔBDC có MK//BD
nên MK/BD=CM/CB=1/2
Xét ΔAMK có DI//MK
nên DI/MK=1/2
=>DI=1/2MK=1/4BD
Kẻ BH vuông góc với AC
\(S_{ABC}=\dfrac{1}{2}\cdot BH\cdot AC\)
\(S_{ABD}=\dfrac{1}{2}\cdot BH\cdot AD\)
=>\(\dfrac{S_{ABC}}{S_{ABD}}=\dfrac{AC}{AD}=3\)
=>\(S_{ABD}=\dfrac{20}{3}\left(cm\right)\)
Kẻ AK vuông góc BD
\(S_{ABD}=\dfrac{1}{2}\cdot AK\cdot BD\)
\(S_{ABI}=\dfrac{1}{2}\cdot AK\cdot BI\)
=>\(\dfrac{S_{ABD}}{S_{ABI}}=\dfrac{BD}{BI}=\dfrac{4}{3}\)
=>\(S_{ABI}=\dfrac{20}{3}:\dfrac{4}{3}=\dfrac{20}{4}=5\left(cm^2\right)\)
EM MỚI HỌC LỚP 6 THÔI .