Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, AM là đường trung tuyến của tam giác cân ABC => BM=MC=1/2 BC = 5
AM là đường trung tuyến của tam giác cân ABC nên AM cũng đồng thời là đường cao trong tam giác này
=> góc AMB = 90độ
Áp dụng định lí Pytago vào tam giác vuông ABM tại M có: \(AM^2=AB^2-BM^2=13^2-5^2=12^2\Rightarrow AM=12\\ \)
b, EF là trung trực AC => FE vuông góc AC và R là trung điểm AC
Hay góc FEC=90độ và EC=EA
Xét tam giác FEC và FEA có:
FE _ cạnh chung
góc FEC = góc FEA = 90độ
EC=EA
=> tg FEC = tg FEA (c-g-c) => FC=FA => tg FAC cận tại F
Xét tg FAC có FE, AM là 2 đường cao trong tam giác và chúng cắt nhau tại I => I là trực tâm tg FAC => CI vuong góc À
1) Xét ΔCAB vuông tại A và ΔEAD vuông tại A có
AB=AD(gt)
AC=AE(gt)
Do đó: ΔCAB=ΔEAD(hai cạnh góc vuông)
Suy ra: BC=DE(hai cạnh tương ứng)
2) Xét ΔABD có AB=AD(gt)
nên ΔABD cân tại A(Định nghĩa tam giác cân)
Xét ΔABD cân tại A có \(\widehat{BAD}=90^0\)(gt)
nên ΔABD vuông cân tại A(Định nghĩa tam giác vuông cân)
Xét \(\Delta ABC\) và \(\Delta ADE\) có:
AB = AD (gt)
\(\widehat{DAE}=\widehat{BAC}\) (2 góc đối đỉnh)
AC = AE (gt)
\(\Rightarrow\Delta ABC=\Delta ADE\left(c.g.c\right)\)
\(\Rightarrow\widehat{B}=\widehat{D}\) (2 góc tương ứng)
Xét \(\Delta ABM\) và \(\Delta ADN\) có:
\(\widehat{B}=\widehat{D}\) (cmt)
AB = AD (gt)
\(\widehat{BAM}=\widehat{DAN}\) (2 góc đối đỉnh)
\(\Rightarrow\Delta ABM=\Delta ADN\left(g.c.g\right)\)
\(\Rightarrow AM=AN\) (2 cạnh tương ứng) (đpcm)