K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABN và ΔACM có

góc ABN=góc ACM

AB=AC
góc BAN chung

Do đó: ΔABN=ΔACM

Suy ra: AN=AM

Xét ΔABC có AM/AB=AN/AC
nên MN//BC

=>BMNC là hình thang

mà CM=BN

nên BMNC là hình thang cân

b: Xét ΔMBN có góc MBN=góc MNB

nên ΔMBN cân tại M

=>BM=MN=NC

c: Xét ΔOBC có góc OBC=góc OCB

nên ΔOBC cân tại O

=>OC=OB

=>OM=ON

9 tháng 9 2020

c/ 

Xét tg BMC và tg CNB có

BC chung

tg ABC cân nên ^B=^C

=> ^MCB=^NBC=^C/2=^B/2

=> tg BMC = tg CNB (g.c.g) => BM=CN và ^BMC=^CNB

Xét tg OBM và tg OCN có

BM=CN và ^BMC = ^CNB (cmt)

^MBN = ^MCN = ^B/2=^C/2

=> tg OBM = tg OCN (g.c.g) => OM=ON và OB=OC

d/

Xét tg BOP và tg COQ có

OB=OC (c/m ở câu c)

^POB = ^OBC (góc sole trong)=^B/2; ^QOC = ^OCB = ^C/2 (góc so le trong) => ^POB = ^QOC

^PBO = ^QCO = ^B/2 = ^C/2

=> tg BOP = tg COQ (g.c.g)  => OP = OQ

e/ Nối A với O cắt MN tại K' và BC tại I'

Xét tg ABC có O là giao 3 đường phân giác => AO là phân giác của ^A

mà ABC cân tại A => AO cũng là đường trung tuyến => I' là trung điểm của BC nên I trùng I'

Ta có

BM=CN (c/m ở câu c) mà AB=AC => AM=AB-BM=AN=AC-CN => tg AMN cân tại A

=> AO cũng là đường trung tuyến của tg AMN => K' là trung điểm của MN => K trùng K'

=> A, I, O, K đều nằm trên đường phân giác của ^A nên 4 điểm trên thẳng hàng

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

28 tháng 9 2020

a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC

Tứ giác MNCB có MN // BC nên là hình thang

b) Xét ∆EQN và ∆KQC có:

     ^ENQ = ^KCQ (BN//CK, so le trong)

     QN = QC (gt)

     ^EQN = ^KQC (đối đỉnh)

Do đó ∆EQN = ∆KQC (g.c.g)

=> EN = KC ( hai cạnh tương ứng)                  (1)

∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE              (2)

Từ (1) và (2) suy ra KC = BE

Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)

c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)

d) Gọi J là trung điểm của BC 

Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ

Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF

Mà dễ thấy EF // BC nên IJ⊥BC

∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)

28 tháng 9 2020

a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.

=> MN //BC

Tứ giác MNCB có MNBC nên MNCB là hình thang.

b) Xét tứ giác EKCB có EK//BC, BE//CK

=> EKCB là hình bình hành

=> EK = BC (đpcm)

22 tháng 12 2021

a: Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC
Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{MBC}=\widehat{NCB}\)

nên BMNC là hình thang cân

b: Xét ΔABC có 

H là trung điểm của BC

N là trung điểm của AC

DO đó: HN là đường trung bình

=>HN//AB và HN=AB/2

=>HN=AM và HN=AM

Xét tứ giác AMHN có 

HN//AM

HN=AM

Do đó: AMHN là hình bình hành

mà AM=AN

nên AMHN là hình thoi

c: Ta có: AMHN là hình thoi

nên Hai đường chéo AH và MN cắt nhau tại trung điểm của mỗi đường

=>O là trung điểm của AH

Xét tứ giác ABHK có

HK//AB

HK=AB

DO đó: ABHK là hình bình hành

Suy ra: Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của AH

nên O là trung điểm của BK

19 tháng 9 2020

https://hoidap247.com/cau-hoi/27753