Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
góc BAM chung
Do đó: ΔABM=ΔACN
2: XétΔBMC vuông tại M và ΔCNB vuông tại N có
BC chung
BM=CN
Do đó: ΔBMC=ΔCNB
1: Xét ΔABM và ΔACN có
\(\widehat{ABM}=\widehat{ACN}\)
AB=AC
góc A chung
Do đó: ΔABM=ΔACN
2: Xét ΔBMC và ΔCNB có
BM=CN
BC chung
MC=NB
Do đó: ΔBMC=ΔCNB
a: Xét ΔMBC và ΔMDA có
góc MCB=góc MAD
MC=MA
góc BMC=góc DMA
=>ΔMBC=ΔMDA
b: Xét ΔAMB và ΔCMD có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔAMB=ΔCMD
=>AB=CD
=>CA=CD
=>ΔCAD cân tại C
c: góc BCD=góc BAD
góc BCE=180 độ-góc ACB
=góc ABC+góc BAC
=góc ACB+góc BAC
=góc CAD+góc BAC
=góc BAD
=>góc BCD=góc BCE
d: Xét ΔEBD có
EM là trung tuyến
EC=2/3EM
=>C là trọng tâm
=>DC đi qua trung điểm của BE
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc BAM chung
=>ΔAMB=ΔAMC
=>góc ABM=góc ACN
b: góc ABM+góc HBC=góc ABC
góc ACN+góc HCB=góc ACB
mà góc ABM=góc ACN và góc ABC=góc ACB
nên góc HBC=góc HCB
=>HB=HC
c: Xét ΔABC có AN/AB=AM/AC
nên NM//BC
NM//BC
=>góc HMN=góc HBC; góc HNM=góc HCB
mà góc HBC=góc HCB
nên góc HMN=góc HNM
góc EMN=góc MNC
góc MNC=góc HMB
=>góc EMN=góc HMB
=>MN là phân giác của góc EMB
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có AB=AC
góc BAM chung
=>ΔAMB=ΔAMC
=>góc ABM=góc ACN
b: góc ABM+góc HBC=góc ABC
góc ACN+góc HCB=góc ACB
mà góc ABM=góc ACN và góc ABC=góc ACB
nên góc HBC=góc HCB
=>HB=HC
c: Xét ΔABC có AN/AB=AM/AC nên NM//BC NM//BC
=>góc HMN=góc HBC; góc HNM=góc HCB mà góc HBC=góc HCB nên:
góc HMN=góc HNM; góc EMN=góc MNC; góc MNC=góc HMB
=>góc EMN=góc HMB
=>MN là phân giác của góc EMB
a) Ta có: AN = NB = 1/2AB (gt)
AM = MC = 1/2AC (gt)
mà AB = AC (gt)
=> AN = NB = AM = MC
Xét tam giác ABM và tam giác ACN
có: AM = AN (gt)
\(\widehat{A}\): chung
AB = AC (gt)
=> tam giác ABM = tam giác ACN (c.g.c)
b) Ta có: AN = NB (gt)
AM = MC (gt)
=> NM là đường trung bình của tam giác ABC
=> MN // BC
c) Ta có: tam giác ABM = tam giác ACN (cmt)
=> \(\widehat{ABM}=\widehat{ACN}\)
Mà \(\widehat{B}=\widehat{ABM}+\widehat{MBC}\)
\(\widehat{C}=\widehat{ACN}+\widehat{NCB}\)
\(\widehat{B}=\widehat{C}\) (gt)
=> \(\widehat{KBC}=\widehat{KCB}\) => tam giác KBC cân tại K có KD là đường trung truyến => KD cũng là đường cao => KD \(\perp\)BC
Tam giác ABC cân tại A có AD là đường trung tuyến => AD cũng là đường cao => AD \(\perp\)BC
=> KD \(\equiv\)AD => A, K, D thẳng hàng
a, Xét \(\Delta ABM\)và \(\Delta CAN\) có
AB = AC ( \(\Delta\)cân )
\(\widehat{A}\) chung
AN = AM
\(\Rightarrow\Delta ABM=\Delta CAN\)( c.g.c)
`@` `\text {Ans}`
`\downarrow`
`1)`
Vì `\Delta ABC` cân tại A.
`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$
Xét `\Delta ABM` và `\Delta ACN`:
`\text {AB = AC}`
$\widehat {A} \text { chung}$
$\widehat {ANC} = \widehat {AMB} (=90^0)$
`=> \Delta ABM = \Delta ACN (ch-gn)`
`2)`
Xét `2 \Delta` vuông `BMC` và `CNB`:
$\widehat {B} = \widehat {C}$
`\text {BC chung}`
`=> \Delta BMC = \Delta CNB (ch-gn)`
`3)`
Vì `\Delta BMC = \Delta CNB (b)`
`-> \text {BN = CM (2 cạnh tương ứng)}`
Ta có: \(\left\{{}\begin{matrix}\text{AB = AN + NB}\\\text{AC = AM + MC}\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{BN = CM}\end{matrix}\right.\)
`-> \text {AM = AN}`
Xét `\Delta AMN`:
`\text {AM = AN}`
`-> \Delta AMN` cân tại A.
`4)`
Kẻ đường cao AI
Vì AI đi qua MN
`-> \text {AI} \bot \text {MN}`
Ta có: \(\left\{{}\begin{matrix}\text{AI }\bot\text{ MN}\\\text{AI }\bot\text{ BC}\end{matrix}\right.\)
`@` Theo tiên đề euclid
`-> \text {MN // BC}`
Hoặc bạn có thể giải cách này
Vì `\Delta AMN` cân tại A
\(\rightarrow\widehat{\text{AMN}}=\widehat{\text{ANM}}=\dfrac{180^0-\widehat{\text{A}}}{2}\) `(1)`
Vì `\Delta ABC` cân tại A
\(\rightarrow\widehat{\text{ABC}}=\widehat{\text{ACB}}=\dfrac{180^0-\widehat{\text{A}}}{2}\) `(2)`
Từ `(1)` và `(2)`
`->` \(\widehat{\text{ABC}}=\widehat{\text{ANM}}\)
Mà `2` góc này ở vị trí sole trong
`-> \text {MN // BC (t/c 2 đt' //).}`
1: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
góc BAM chung
=>ΔABM=ΔACN
2: Xét ΔNBC vuông tại N và ΔMCB vuông tại M có
BC chung
góc NBC=góc MCB
=>ΔNBC=ΔMCB
3: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
4: AM/AC=AN/AB
=>MN//BC