K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2022

a.b.xét tam giác vuông BNC và tam giác vuông CMB có:

góc B = góc C ( gt )

BC: cạnh chung

Vậy  tam giác vuông BNC = tam giác vuông CMB ( cạnh huyền.góc nhọn )

=> BM = CN ( 2 cạnh tương ứng )

xét tam giác vuông AMI và tam giác vuông ANI có:

A: góc chung 

AI: cạnh chung

Vậy tam giác vuông AMI = tam giác vuông ANI ( cạnh huyền. góc nhọn )

=> AM = AN ( 2 cạnh tương ứng )

=> tam giác AMN cân tại A

=> AI là tia phân giác góc BAC

c. xét tam giác vuông BMI và tam giác vuông CNI có:

BM = CN ( cmt )

BI = CI ( tam giác BNC = tam giác CMB )

Vậy tam giác vuông BMI = tam giác vuông CNI ( cạnh huyền. góc nhọn )

d. ta có: AI là phân giác cũng là đường cao trong 2 tam giác cân ABC và AMN

=> AI vuông với MN và BC 

=> MN // BC ( 2 cạnh cùng vuông với một cạnh )

Chúc bạn học tốt!!!

23 tháng 3 2020

A B C M N

a) Xét \(\Delta\)ABN và \(\Delta\)ACM có:

AB=AC (tam giác ABC cân tại A)

\(\widehat{A}\)chung

\(\widehat{ANB}=\widehat{AMC}=90^o\)

=> \(\Delta ABN=\Delta ACM\left(ch-gn\right)\)

16 tháng 1 2016

cậu giỏi toán hình nhất lớp đúng ko

16 tháng 1 2016

trái lại là cực kì tệ...

 

Bài 3.Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm M. Qua M kẻ đường thẳng song song với BC cắt AC tại N. Chứng minh :   a)Tam giác AMN cân                     b) BN = MC            c) ⧍BMN = ⧍CNM   d) Gọi I là giao điểm của BN và CM.Chứng minh: ⧍BMI = ⧍CNI   e) Lấy D là trung điểm của BC. Chứng minh ba điểm A; I; D thẳng hàng.Bài 4. Cho tam giác ABC vuông tại A, CM là phân giác...
Đọc tiếp

Bài 3.Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm M. Qua M kẻ đường thẳng song song với BC cắt AC tại N. Chứng minh :

   a)Tam giác AMN cân                     b) BN = MC            c) ⧍BMN = ⧍CNM

   d) Gọi I là giao điểm của BN và CM.Chứng minh: ⧍BMI = ⧍CNI

   e) Lấy D là trung điểm của BC. Chứng minh ba điểm A; I; D thẳng hàng.

Bài 4. Cho tam giác ABC vuông tại A, CM là phân giác của góc ACB ( M € AC).Kẻ MN vuông góc với BC ( N € BC).

  a)Chứng minh : ⧍ACM = ⧍NCM

  b)Đường thẳng MN và AC cắt nhau tại P.Chứng minh : ⧍MBP cân.

  c)Gọi I là giao điểm của CM và BP. Trên tia đối của tia IC lấy điểm Q sao cho

 IC = IQ.Chứng minh : QB vuông góc với AB.

  d)So sánh chu vi của tam giác MBQ với chu vi tam giác MAC.

 

2
7 tháng 4 2020

a) Có tam giác ABC cân tại A => AB=AC

M thuộc AB, N thuộc AC và MN//BC

=> AM=AN

=> Tam giác AMN cân tại A

b) Xét tứ giác BMNC có MN//BC

=> BMNC là hình thang

Xét hình thang BMNC có
AM=AN và AB=AC => MN=NC

=> Hình thang BMNC cân 

=> BN=CM (tính chất hình thang cân)

c) Xét tam giác BMN và tam giác CNM có:

BN chung

\(\widehat{MNB}=\widehat{NBC}\) (MN//BC)

BM=MC (cmt)

=> Tam giác BMN=Tam giác CNM (cgc)

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

a: Xét ΔABN vuông tại N và ΔACM vuông tại M có

AB=AC
\(\widehat{BAN}\) chung

Do đó: ΔABN=ΔACM

Suy ra: BN=CM

b: Xét ΔMBC vuông tại M và ΔNCB vuông tại N có 

BC chung

MC=BN

Do đó: ΔMBC=ΔNCB

Suy ra: \(\widehat{HCB}=\widehat{HBC}\)

hay ΔHBC cân tại H

c: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0
24 tháng 11 2018

Áp dụng t/c đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền được: AM=12BCAM=12BC (1)

Ta có: BM=CM=12BC(2)BM=CM=12BC(2)

Từ (1) và (2) AM=BM=CM⇒AM=BM=CM

mà AM=MDAM=MD=BM=CMAM=MD⇒AM=MD=BM=CM

ΔAMB⇒ΔAMB cân tại M và ΔCMDΔCMD cân tại M

Áp dụng t/c tổng 3 góc trong 1 t/g vào:

ΔAMBΔAMB có: ABMˆ=1800AMBˆ2(3)ABM^=1800−AMB^2(3)

ΔCMDΔCMD có: MCDˆ=180oCMDˆ2(4)MCD^=180o−CMD^2(4)

Từ (3) và (4) ABMˆ=MCDˆ(AMBˆ=CMDˆ)⇒ABM^=MCD^(AMB^=CMD^) đối đỉnh

mà 2 góc này ở vị trí so le trog nên ABAB // CD

Lại có: BACˆ+ACDˆ=180oBAC^+ACD^=180o (trong cùng phía)

ACDˆ=90o⇒ACD^=90o

Nối A với I.

Ta lại có: ACIˆ+EICˆ=180oACI^+EIC^=180o (trong cùng phía)

EICˆ=90o⇒EIC^=90o

Do CI=CAΔACICI=CA⇒ΔACI cân tại C

CIAˆ=45o⇒CIA^=45o (tổng 3 góc trog tg)

Khi đó: AIEˆ=45oAIE^=45o

CIAˆ=AIEˆ⇒CIA^=AIE^ hay DIAˆ=EIAˆDIA^=EIA^

Vì ACAC // EI CAIˆ+IAEˆ+AEIˆ=180o⇒CAI^+IAE^+AEI^=180o

45o+IAEˆ+AEIˆ=180o⇒45o+IAE^+AEI^=180o (7)

AB // CD CIAˆ+CADˆ+BADˆ=180o⇒CIA^+CAD^+BAD^=180o

45o+IADˆ+BADˆ=180o⇒45o+IAD^+BAD^=180o (8)

Lại do AC // EI HACˆ=AEIˆ⇒HAC^=AEI^ (đồng vị) (5)

Có: HACˆ+HCAˆ=90oHAC^+HCA^=90o

Bˆ+HCAˆ=90oB^+HCA^=90o

Khi đó: HACˆ=BˆHAC^=B^

mà Bˆ=MABˆB^=MAB^ (ΔAMBΔAMB cân tại M)

HACˆ=MABˆ⇒HAC^=MAB^ (6)

Từ (5) và (6) AEIˆ=MABˆ⇒AEI^=MAB^

hay BADˆ=AEIˆBAD^=AEI^ (9)

Từ (7); (8) và (9)  IAEˆ=IADˆIAE^=IAD^

Xét ΔAEIΔAEI và ΔADIΔADI có:

EIAˆ=DIAˆEIA^=DIA^ (c/m trên)

AI chung

IAEˆ=IADˆIAE^=IAD^ (c/m trên)

ΔAEI=ΔADI(g.c.g)⇒ΔAEI=ΔADI(g.c.g)

AE=AD⇒AE=AD (*)

mà AM = MD = BM = CM (c/m trên)

AM+MD=BM+CM⇒AM+MD=BM+CM

AD=BC⇒AD=BC (**)

Từ (*) và (**) AE=BC⇒AE=BCđpcm.→đpcm.

Bài này hay ghê!