Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có
AC=AB(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔAEC=ΔADB(cạnh huyền-góc nhọn)
Suy ra: AE=AD(hai cạnh tương ứng)
Xét ΔAED có AE=AD(cmt)
nên ΔAED cân tại A(Định nghĩa tam giác cân)
a: Xét ΔADB vuông tại Dvà ΔAEC vuông tại E có
AB=AC
góc A chung
Do đó: ΔADB=ΔAEC
=>AD=AE
b: Xét ΔABC co AE/AB=AD/AC
nên ED//BC
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
d: AB=AC
IB=IC
Do đó: AI là trung trực của BC
=>AI vuông góc với BC
chắc là bạn sai đề rồi
tam giác ABC mà góc A = 90 độ thì sao mà kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E được
Bài 2:
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔADB=ΔAEC
Suy ra: AD=AE
hayΔADE cân tại A
b: Xét ΔABC có
AE/AB=AD/AC
nên DE//BC
c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
EC=DB
BC chung
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
d: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
Do đó: ΔAEI=ΔADI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
=>AK là tia phân giác của góc BAC
Ta có: ΔABC cân tại A
mà AK là đường phân giác
nên AK là đường cao
a) Xét tam giác ADB và tam giác AEC:
^ADB = ^AEC (=90o)
AB = AC (∆ABC cân tại A)
^A chung
=> Tam giác ADB = Tam giác AEC (ch - gn)
=> AD = AE (2 cạnh tương ứng)
=> Δ ADE cân tại A
b) Xét tam giác AED: ^A + ^AED + ^ADE = 180o (tổng 3 góc trong tam giác)
Mà ^AED = ^ADE (Δ ADE cân tại A)
=> ^A = 2 ^AED (1)
Xét tam giác ABC: ^A + ^B + ^C = 180o (tổng 3 góc trong tam giác)
Mà ^B = ^C (Δ ABC cân tại A)
=> ^A = 2 ^B (2)
Từ (1) và (2) => ^B = ^AED
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (dhnb)
c) Xét tam giác BEC và tam giác CDB:
^BEC = ^CDB (= 90o)
BC chung
^B = ^C (∆ABC cân tại A)
=> Tam giác CBE = Tam giác CDB (ch - gn)
=> IB = IC (2 cạnh tương ứng)
d) Xét tam giác ABI và tam giác ACI:
AB = AC (∆ABC cân tại A)
AI chung
IB = IC (cmt)
=> Tam giác ABI = Tam giác ACI (c - c - c)
=> ^BAI = ^CAI (2 góc tương ứng)
=> AI là phân giác ^A hay AM là phân giác ^A (M\(\in AI\))
Xét ∆ABC cân tại A có: AM là phân giác ^A (cmt)
=> AM là đường cao (TC các đường trong tam giác)
=> AM \(\perp\) BC