Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH^2+16HB-225=0\)
hay BH=9(cm)
\(\Leftrightarrow AC=20cm\)
hay AH=12cm
Ta có: \(AB^2=HB\cdot HC\)
\(\Leftrightarrow HB\left(HB+16\right)=225\)
\(\Leftrightarrow HB^2+16HB-225=0\)
\(\Leftrightarrow HB=9\left(cm\right)\)
\(\Leftrightarrow AC=\sqrt{HC\cdot BC}=\sqrt{16\cdot25}=20\left(cm\right)\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (đl pytago)
\(\Leftrightarrow4a^2=a^2+AC^2\\\Rightarrow AC=4a^2-a^2=3a^2 \)
Vậy \(AC=\sqrt{3}a\)
Tam giác ABC vuông tại A có AH \(\perp\) AC tại H
Ta có:
\(BC.AH=AB.AC\) (hệ thức lượng)
\(\Leftrightarrow2a.AH=a.\sqrt{3}a\\ \Rightarrow AH=\dfrac{\sqrt{3}a^2}{2a}=\dfrac{\sqrt{3}a}{2}\)
Vậy \(AH=\dfrac{\sqrt{3}a}{2}\)
\(AH=\dfrac{2\cdot AB}{BC}=\dfrac{2\cdot2\sqrt{2}}{4}=\sqrt{2}\left(cm\right)\)
\(BH=CH=\sqrt{AB^2-AH^2}=\sqrt{8-2}=\sqrt{6}\left(cm\right)\)