Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
a)
Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=5√3(cm)Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=53(cm)
b) Xét ΔABD và ΔEBD vuông tại A và E có:
+góc ABD = góc EBD
+ BD chung
=>ΔABD = ΔEBD (cg-gn)
c) Xét ΔABC và ΔEBF vuông tại A và E có:
+ AB = EB (do ΔABD = ΔEBD)
+ góc ABC chung
=>ΔABC = ΔEBF (cgv-gn)
d) Do ΔABC = ΔEBF nên BC = BF
Xét ΔBFG và ΔBCG có:
+ BF = BC
+ BG chung
+ FG = CG
=> ΔBFG = ΔBCG (c-c-c)
=> góc FBG = góc CBG
=> BG là phân giác của góc ABC
=> BG đi qua D
=> AC,BG, EF đồng quy tại D.
a)
Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=5√3(cm)Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=53(cm)
b) Xét ΔABD và ΔEBD vuông tại A và E có:
+góc ABD = góc EBD
+ BD chung
=>ΔABD = ΔEBD (cg-gn)
c) Xét ΔABC và ΔEBF vuông tại A và E có:
+ AB = EB (do ΔABD = ΔEBD)
+ góc ABC chung
=>ΔABC = ΔEBF (cgv-gn)
d) Do ΔABC = ΔEBF nên BC = BF
Xét ΔBFG và ΔBCG có:
+ BF = BC
+ BG chung
+ FG = CG
=> ΔBFG = ΔBCG (c-c-c)
=> góc FBG = góc CBG
=> BG là phân giác của góc ABC
=> BG đi qua D
=> AC,BG, EF đồng quy tại D.
Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN
a: Xét ΔABD vuông tại D và ΔACD vuông tại D có
AB=AC
AD chung
=>ΔABD=ΔACD
=>BD=CD
=>D là trung điểm của BC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF
=>ΔAEF cân tại A
c: CI+2AD
=3IK+2*3/2*AK
=3*(IK+AK)>3AI
a: Xét ΔBEA và ΔBEC có
BE chung
EA=EC
BA=BC
=>ΔBEA=ΔBEC
b: góc DBE=góc EBC
góc DEB=góc EBC
=>góc DBE=góc DEB
=>ΔDBE cân tại D
Xét ΔABC có
E là trung điểm của AC
ED//BC
=>D là trung điểm của AB
c: Xét tứ giác KBEA có
D là trung điểm chung của KE và BA
góc BEA=90 độ
=>KBEA là hcn
=>KB vuông góc BE
Câu 1 (Bạn tự vẽ hình giùm)
a) Mình xin chỉnh lại đề một chút: \(\Delta ABD=\Delta ACD\)
\(\Delta ABD\)và \(\Delta ACD\)có: AB = AC (\(\Delta ABC\)cân tại A)
BD = DC (D là trung điểm của BC)
Cạnh AD chung
=> \(\Delta ABD=\Delta ACD\) (c. c. c) (đpcm)
b) Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BAD}=\widehat{DAC}\)(hai góc tương ứng) => AD là tia phân giác của \(\widehat{BAC}\)(đpcm)
c) Mình xin chỉnh lại đề một chút: AD \(\perp\)BC tại D
Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BDA}=\widehat{CDA}\)(hai góc tương ứng)
Mà \(\widehat{BDA}+\widehat{CDA}\)= 180o (kề bù)
=> \(\widehat{BDA}=\widehat{CDA}=\frac{180^o}{2}\)= 90o => AD \(\perp\)BC tại D (đpcm)