K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

a)Xét tam giác AKC và tam giác AHB có

Góc A chung

AB=AC(ABC cân)

góc AKC=góc AHB(=90 độ)

Suy ra tam giác AKC=tam giác AHB(g.c.g)

Suy ra AK=AH(hai góc tương ứng)

Vậy AKH là tam giác cân

Ta có góc AKH=(180 độ -góc A)/2

lại có góc ABC=(180 độ -góc A)/2

vậy góc AKH=góc ABC

MÀ hai góc này nằm ở vị trí đồng vị nên KH//BC

Vậy tứ giácBCHK là hình thang

Ta lại có góc B = góc C(ABC cân)

Suy ra tứ giác BCHK là hình thang cân

21 tháng 9 2020

                                                    Bài giải

a, Xét \(\Delta KBC\)\(\Delta HCB\)có :

\(\widehat{BKC}=\widehat{CHB}=90^o\text{ }\left(gt\right)\)

BC : cạnh chung

\(\widehat{KBC}=\widehat{HCB}\text{ }\left(gt\right)\)

\(\Rightarrow\text{ }\Delta KBC=\Delta HCB\text{ }\left(ch\text{ - }gn\right)\)

\(\Rightarrow\text{ }BK=HC\)

Ta có :

\(AB=AK+BK\)

\(AC=AH+HC\)

Mà : \(AB=BC\text{ }\left(gt\right)\text{ ; }BK=HC\text{ }\left(gt\right)\)

\(\Rightarrow\text{ }AK=AH\)

\(\Rightarrow\text{ }\Delta AKH\) cân tại A \(\Rightarrow\text{ }\widehat{AKH}=\frac{180^o-\widehat{A}}{2}\text{ }\left(1\right)\)

\(\Rightarrow\text{ }\Delta ABC\) cân tại A \(\Rightarrow\text{ }\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\text{ }\left(2\right)\)

Từ ( 1 ) ( 2 ) \(\Rightarrow\text{ }\widehat{AKB}=\widehat{ABC}\) Mà hai góc này ở vị trí đồng vị \(\Rightarrow\text{ }KH\text{ }//\text{ }BC\)

\(\widehat{B}=\widehat{C}\text{ }\left(gt\right)\) \(\Rightarrow\text{ }BCHK\)là hình thang cân

b, Dễ mà !

26 tháng 6 2018

A B C H K 60

a) Xét \(\Delta ABC\)đều có H là chân đường vuông góc hạ tự B xuống cạnh đáy AC

\(\Rightarrow\)H cũng là chân đường trung tuyến hạ từ B xuống đáy AC

\(\Rightarrow AH=HC\)

Tương tự  \(\Rightarrow AK=KB\)

\(\Rightarrow\)HK là đường trung bính \(\Delta ABC\)

\(\Rightarrow HK//BC\)\(\Rightarrow\)HKCB là hình thang ( 1 )

Lại có  \(\Delta ABC\)đều

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(=60^o\right)\)( 2 )

Từ (1) và (2) \(\Rightarrow\)BCHK là hình thang cân

b) Xét  \(\Delta ABC\)đều  \(\Rightarrow AB=AC=BC=\frac{24}{3}=8\left(cm\right)\)

Ta có  \(AK=\frac{1}{2}AB;AH=\frac{1}{2}AC\) 

Mà AB = AC  \(\Rightarrow AK=AH\)

Lại có  \(\widehat{KAH}=60^o\)

\(\Rightarrow\Delta AHK\)đều 

Mà  \(AK=\frac{1}{2}AB\Rightarrow AK=\frac{1}{2}\times8=4\left(cm\right)\)

\(\Rightarrow AK=AH=HK=4\left(cm\right)\)

\(C_{BCHK}=KH+HC+BC+BK\)

\(\Leftrightarrow C_{BCHK}=KH+AH+BC+AK\)

\(\Leftrightarrow C_{BCHK}=4+4+8+4\)

\(\Leftrightarrow C_{BCHK}=20\left(cm\right)\)

Vậy ...

1 tháng 11 2019

a)Tam giác KBC=tam giácHCB(cạnh huyền góc nhọn)

=>BH=CK ; BK=CH

Mà AB=AC=>AK=KH=>Tam giác AKH cân tại A

=>Góc AKH=Góc KBC mà 2 góc đồng vị

=>KH//BC=>KHCB là hình thang,có BH=CK

=>KHCB là hình thang cân

b)Tứ giác KIBM có:KH=BM ; KH//BM

=>KHBM là hình bình hành 

=>KB=HM

    Mà HC=KB

=>HC=MH=> Tam giác HMC cân tại H

c)Để A,O,M thẳng hàng thì tam giác ABC phải là tam giác đều (bạn tự chứng minh nha)

Chúc bạn học tốt!!

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC
góc A chung

Do đó: ΔABH=ΔACK

Suy ra: AH=AK

Xét ΔABC có AH/AC=AK/AB

nên HK//BC

=>BKHC là hình thang

mà BH=CK

nên BKHC là hình thang cân

b: Xét ΔABC đều có AB=AC=BC

nên AB=AC=BC=24/3=8cm

Vì ΔABC đều

mà BH là đường cao

nên BH là phân giác của góc ABC và H là trung điểm của AC

=>HC=AC/2=4cm

Xét ΔKHB có góc KHB=góc KBH

nên ΔKHB cân tại K

=>KH=KB=CH=4cm

\(C=4+4+4+8=20\left(cm\right)\)

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH 

a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC 

b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH 

Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .

Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông. 

Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng: 

a) Tam giác AHB đồng dạng với tam giác CHA .

b) BAC = 90o 

Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC 

Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng 

Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng : 

a) BH.BD=BK.BC

b) CH.CE=CK.CB

c) BH.BD+CH.CE=BC2 

Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng : 

a) AB.AE=AC.HC

b) BC. AK=AC.HC

c) AB.AE+AD.AK=AC2 

3
13 tháng 7 2015

sao nhiều quá vậy cậu dăng như này nhìn đã thấy ngán rồi chẳng ai làm đâu

19 tháng 6 2016

nhieu

8 tháng 7 2015

a)Ta có: tam giác ABC là tam giác cân tại A.

=> góc B= góc C

Vì BD và CE là phân giác góc B và C

=> góc DBC = góc EBD = góc DCE = góc ECB

Xét tam giác EBC và tam giác DBC có:

góc ECB = góc DBC

góc BCD = góc EBC

Chung cạnh BC

=> tam giác EBC = tam giác DCB( g.c.g)

=> EC = DB

=> tứ giác BECD là hình thang cân (vì có 2 đường chéo bằng nhau)

b) mk chưa biết làm

8 tháng 7 2015

A B C E D

a)Gợi ý:

     Đầu tiên bạn chứng minh BEDC là hình thang, sau đó chứng minh nó là hình thang cân.

Ta có:

góc B = (1800 - Â) : 2 

rồi chứng minh tam giác EAD cân tại A, sau đó   => góc AED = góc B =  (1800 - Â) : 2

=> ED // BC   (2 góc đồng vị)

=> BECD là hình thang   (2 cạnh đối song song với nhau)

mà góc B = góc C   (tam giác ABC cân tại A)

=> BECD là hình thang cân   (2 góc kề 1 đáy bằng nhau)

bài b thì mk chưa học

15 tháng 6 2019

a) Xét tam giác ABC và tam giác BAD, ta có:

AB: cạnh chung

AC=AD (ABCD:hình thang cân)

BC=AD (ABCD: hình thang cân)

  =>Tam giác ABC = tam giác BAD (c-c-c)

  =>\(\widehat{ACB}\)=\(\widehat{BDA}\)(2 góc t/ứng)

  Ta có:

\(\widehat{ACD=}\widehat{ACB}\)+\(\widehat{BCD}\)

BDC^ = BDA^ + ADC^

ACD^ = BDC^ (ABCD: hình thang cân)

ACB^ = BDA^ (cmt)

  =>BCD^ = ADC^

  Ta lại có AB//CD (gt):

  => ABC^ = BCD^ (2 góc sole trong)

       BAD^ = ADC^ (2 góc sole trong)

       BCD^ = ADC^ (cmt)

  => ABC^ = BAD^

  Ta có ME//BC (gt):

  => MEA^ = ABC^ (2 góc sole trong)

  Mà ABC^ = BAD^ (cmt)

  => MEA^ = BAD^

Mặt khác: MAE^ = BAD^ ( 2 góc đối đỉnh)

  => MEA^ = MAE^

  => Tam giác MAE cân tại M.

15 tháng 6 2019

MIK xin lỗi, mik đánh sai đề bài, sửa lại như sau:

a) Tam giác MAE cân

b) AF = DE