Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABD\)và \(\Delta ACE\)có:
\(\widehat{A}:chung\)
\(\Delta ABC\)cân => AB = AC ( ĐL )
\(\widehat{ADB}=\widehat{ACE}=90^0\)(gt)
=> \(\Delta ABD=\Delta ACE\) ( cạnh huyền - góc nhọn ) ( ĐPCM ) (1)
b) Từ ( 1 ) => AE = AD ( 2 cạnh tương ứng )
nên \(\Delta AED\)là tam giác cân ( ĐPCM )
a)
Xét 2 tam giác vuông ABD và tam giác ACE ta có
AB=AC ( do tam giác ABC là tam giác cân)
Góc A là góc chung
vậy tam giác ABD = tam giác ACE (ch-gn)
Ta có tam giác ABD =tam giác ACE ( chứng minh trên )
từ đó suy ra AD=AE
Nên suy ra tam giác AED là tam giác cân tại A
b)
gọi I là giao điểm của AH và ED
Xét 2 tam giác vuông AEH và tam giác ADH ta có
AE=AD ( chứng minh ở câu a)
góc D = gócE=90*
AH là cạnh chung
do đo tam giác AED = ADH ( c-g-c)
suy ra góc EAH=góc DAH ( do 2 góc tương ứng )
EH =HD ( do hai cạnh tương ứng )
suy ra H là trung điểm của ED (1)
Xét tam giác AEI và tam giác ADI ta có
AE=AD ( chứng minh câu a )
góc EAH=DAH (chứng minh trên )
AI là cạnh chung
Do đó tam giác AEI =tam giác ADI (c-g-c)
suy ra gócEIA= gócAID ( Do 2 góc tương ứng )
mà góc EIA +góc AID =180
Nên góc EIA=AID=90* (2)
tTừ (1) và ( 2) suy ra
AH là trung đểm của ED
CÒN CÂU C MÌNH LÀM SAU
c)
Ta có
AB=AC ( do tam giác ABC là tam giác cân tại A )
Mà AE=AD ( chứng minh câu a )
suy ra EB=DC
Xét 2 tam giác vuông tam giác EBC và tam giác DCB ta có
EB=DC ( chứng minh trên )
BC là cạnh chung
Do đó tam giác EBC=tam giác DCB ( ch-cgv)
suy ra EC=DB ( do hai cạnh tướng ứng )
Mà DK=DB
Suy ra EC=DK
Xét 2 tam giác vuông tam giác EBC và tam giác DCB ta có
EB=DC ( chứng minh trên )
Góc BEC =góc CDB =90*
EC=DK ( chứng minh trên )
do đó tam giác EBC =DCB ( C-G-C )
Suy ra góc ECB=góc DKC ( do hai góc tương ứng)
a và b. Xét tam giác ABD và ACE
 (chung)
AB = AC
Suy ra tam giác ABD = tam giác ACE ---> AE = AD
Vậy tam giác AED là tam giác cân.
c)Xin lỗi nha mình không giải được
d) Ta có CD vuông góc với BK. vậy CD là đường cao của tam giác CBK mà BD = DK do đó đường cao trùng với đường trung trực. Suy ra tam giác cân ---> DKC = DBC
Mà góc ACE = ABD. Vậy suy ra góc ECB = DBC mà DBC = DKC --> ECB = DKC.
a, Xét tg ABD ( D=90) và tg ACE ( E=90)
A; góc chung
AB =AC
tg ABD = tg ACE ( cạnh huyền - góc nhọn )
b, vì tg ABD =tg ACE nên AE = AD ( 2 cạnh tương ứng ) suy ra : tg AED cân
c, Xét tg AEH ( E = 90 ) và tg ADH ( D = 90 )
AE = AD ( cm ý b)
AH : cạnh chung
suy ra : tg AEH = tg ADH ( cạnh góc vuông - cạnh huyền )
suy ra AH là đường phân giác
Xét tg AED : vì trong tam giac cân, đường phân giác đồng thời là đường trung trực
suy ra AH là đường trung trực của ED
d, Xét tg ECB (E=90) và tg DBC
a, xét tam giác abd và tam giác ace có
góc adb=góc aec =90o (gt)
góc a chung
ab=ac (do tam giác abc cân -gt)
suy ra tam giác abd= tam giác ace (cạnh huyền - góc nhọn)
b, có ad=ae (do tam giác abd = tam giác ace-cmt)
suy ra tam giác aed cân tại a
c, có ad=ae (cmt)
suy ra a thuộc đường trung trực của ed
xét tam giác aeh và tam giác adh có
góc aeh = góc adh=90o (gt)
ad=ae (cmt)
ah cạnh huyền chung
suy ra tam giác aeh=tam giác adh (cạnh huyền cạnh góc vuông)
suy ra hd=he
suy ra h thuộc đường trung trực của ed
suy ra ah là đường trung trực của ed
d,xét tam giác bdc và tam giác kdc có
bd=dk (gt)
góc bdc = góc cdk (=90o-gt)
cd chung
suy ra tam giác bdc = tam giác kdc (c.g.c)
suy ra góc dbc = góc dkc (1)
có góc bdc= góc abc - góc abd
góc ecb= góc acb - góc ace
mà góc abc=góc acb (do tam giác abc cân tại a -gt)
góc abd=góc ace (do tam giác abd=tam giác ace-cmt)
suy ra góc dbc= góc ecb (2)
từ(1)(2) suy ra góc ecb = góc dkc
a. Xét tam giác ABD và tam giác ACE có:
-AEC=ADB=90 (gt)
-AB=AC (2 cạnh bên tam giác cân ABC)
-A là góc chung
=> tam giác ABD = tam giác ACE (g.c.g) (đpcm)
b.*Vì tam giác ABD = tam giác ACE (câu a)
=> BH=CH (2 cạnh tương ứng)
*Xét tam giác EHB và tam giác DHC có:
-BEH=CDH=90 (gt)
-BH=CH (CM trên)
-EHB=DHC (đối đỉnh)
=> tam giác EHB = tam giác DHC (c.huyền-g.nhọn)
=>EB=DC (2 cạnh tương ứng)
*Ta có: AB=AE+EB
và AC=AD+DC
mà AB=AC (2 cạnh bên tam giác cân ABC)
và EB=DC (CM trên)
=>AE=AD
=> Tam giác ADE cân tại A (đpcm)
c. Vì AE=AD (CM trên)
và HE=HD (CM trên)
=> AH là đường trung trực của ED (đpcm)
d. *Xét tam giác DKC và tam giác DBC có:
-BDC=KDC=90 (gt)
-BD=KD (gt)
-DC là cạnh chung
=>tam giác DKC = tam giác DBC (c.g.c)
=> DBC=DKC (2 góc tương ứng) (1)
*Vì BH=CH (câu b)
=> tam giác HBC cân tại H
=>DBC=ECB (2 góc ở đáy tam giác cân) (2)
*Từ (1) và (2) => ECB=DKC (đpcm)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
b: Xét ΔADE có AD=AE
nên ΔADE cân tại A
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
AD=AE
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
mà AD=AE
nên AH là đường trung trực của ED