Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha
a) Xét tam giác AMB và tam giác AMC có:
AM chung
góc BAM = góc CAM ( AM là tia p.g góc BAC )
AB=AC(gt)
=> tam giác AMC = tam giác AMC (c-g-c) Đpcm
b) Vì AB=AC => tam giác ABC cân tại A, mà AM là tia phân giác của góc A => M là trung điểm BC
Xét tam giác AMB và tam giác DMC có
AM=DM (gt)
AMB=DMC ( đối đỉnh )
BM=CM ( M là trung điểm BC )
=> tam giác AMB = tam giác DMC (c-g-c)
=> góc BAM = góc CDM ( 2 góc tương ứng )
mà góc BAM và góc CDM ở vị trí so le trong
=>AB // CD
a, dễ tự làm
b, xét tam giác CAB và tam giác DAB có : AB chung
AC = AD (gt)
góc CAB = góc DAB = 90
=> tam giác CAB = tam giác DAB (2cgv)
=> góc CBA = góc DBA (đn)
xét tam giác AFB và tam giác AEB có : AB chung
góc AFB = góc AEB = 90
=> tam giác AFB = tam giác AEB (ch - gn)
a) Ta có: BC2 = 52 = 25
AB2 + AC2 = 32 + 42 = 9 + 16 = 25
Suy ra: BC2 = AB2 + AC2
Do đó: \(\Delta ABC\) vuông tại A.
b) Xét hai tam giác vuông ABH và DBH có:
AB = BD (gt)
BH: cạnh huyền chung
Vậy: \(\Delta ABH=\Delta DBH\left(ch-cgv\right)\)
Suy ra: \(\widehat{ABH}=\widehat{DBH}\) (hai góc tương ứng)
Do đó: BH là tia phân giác của \(\widehat{ABC}\).
c) Ta có: AM = MB = MC = \(\dfrac{1}{2}.BC=\dfrac{1}{2}.5=\dfrac{5}{2}\) (cm) (theo định lí đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
Do đó: \(\Delta ABM\) cân tại M (đpcm).
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
MF _|_ BH (gt) và BH _|_ AC (gt) => FM // AC (đl)
=> góc FMB = góc ACB (đồng vị)
mà góc ACB = góc ABC do tam giác ABC cân tại A (gt)
=> góc FMB = góc ABC
xét tam giác BDM và tam giác MFB có : BM chung
góc BDM = góc BFM = 90
=> tam giác BDM = tam giác MFB (ch-gn)
=> BD = FM (đn) (1)
xét tứ giác FHEM có : góc MFH = góc FHE = góc HEM = 90
=> FHEM là hình chữ nhật (dh)
=> FM = HE (tc) và (1)
=> BD = HE (2)
kẻ DO // AC
=> góc BOD = góc ACB (đồng vị)
góc ACB = góc ABC (cmt)
=> góc DBO = góc DOB
=> tam giác DOB cân tại D (dh)
=> BD = DO và (2)
=> DO = HE
mà HE = CK (gt)
=> DO = CK (3)
gọi DK cắt BC tại N
xét tam giác DNO và tam giác KNE có : góc DNO = góc KNE (đối đỉnh)
góc ODN = góc NKC do DO // AC (cách vẽ) và (3)
=> tam giác DNO = tam giác KNE (g-c-g)
=> DN = NK (đn)
mà N nằm giữa D và K
=> N là trung điểm của DK
N thuộc BC
=> BC đi qua trung điểm của DK
a) Vì G là giao điểm của 2 đường Trung tuyến AC và BH nên theo tính chất 3 đường trung tuyến
\(\Rightarrow\frac{AG}{AD}=\frac{2}{3}\)
b) do \(\Delta ABC\)cân tại A\(\Rightarrow\widehat{B}=\widehat{C}\)và \(AB=AC\)
Có AD là đường trung tuyến \(\Rightarrow BD=CD\)
Xét \(\Delta ABD\)và \(\Delta ACD\)ta có :
\(AB=AC\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
\(BD=CD\left(cmt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
c) \(\Delta ABC\)cân \(\Rightarrow AD\)vừa là đường trung tuyến vừa là đường cao \(\Rightarrow\widehat{A_1}=\widehat{A_2}\)
Xét \(\Delta AED\)và \(\Delta AFD\)có :
\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)
\(AD\)chung
\(\widehat{E_1}=\widehat{F}_2=\left(90^o\right)\)
\(\Rightarrow\Delta AED=\Delta AFD\left(ch-gn\right)\)
\(\Rightarrow ED=FD\left(dpcm\right)\)
d) Ta có \(BC=12cm\Rightarrow\frac{1}{2}BC=6m\)hay \(BD=CD=6cm\)
Lại có \(AD\)là đường cao ( do \(\Delta ABC\)cân nên vừa là đường trung tuyến vừa là đường cao )
Xét tam giác vuông \(ADC\), áp dụng định lý Py-ta-go , ta được \(AD^2+CD^2=AC^2\Rightarrow AD^2=AC^2-CD^2=10^2-6^2=100-36=64\)
\(\Rightarrow AD=8cm\)
từ a) có tỉ số \(\frac{AG}{AD}=\frac{2}{3}\Rightarrow\frac{AG}{8}=\frac{2}{3}\Rightarrow AG\approx5,4\)