Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó:ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC
c: Xét ΔMCE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔMCE cân tại C
mà CA là đường cao
nên CA là tia phân giác của góc MCE
mik chỉ giải vắn tắt thoai vì mik sắp pải tắt máy, mak nhớ tick cho mềnh đấy.
TRƯỚC HẾT TA CM BÀI TOÁN PHỤ:
CHO T/G ABC, M LÀ TRUNG ĐIỂM AB, N LÀ TRUNG ĐIỂM AC (BẠN TỰ VẼ). TRÊN TIA ĐỐI NM KẺ ND=NM. NỐI DC, DB.
SAU KHI LÀM XONG, TA SẼ CM ĐC MN//BC VÀ MD=BC
=> 1/2 MD= 1/2 BC
=>MN=1/2 BC
TRỞ LẠI BÀI TOÁN: XÉT T/G ACB CÓ: E LÀ TRUNG ĐIỂM AC (G/T)
M LÀ TRUNG ĐIỂM BC (G/T)
=> EM//AB VÀ EM=1/2 AB
MÀ EM=EH=1/2 HM
=> AB= HM
xét t/g AEH = t/g CEM (c-g-c)
=> AH=MC
MÀ MC=MB (G/T)
=> AH=BM
xét t/g BAM = t/g EMA (C-G-C)
XÉT T/G KDB = T/G MDA (G-C-G)
=> KB=AM (2 CẠNH TƯƠNG ỨNG)
TA THẤY BK//AM (G/T)
=> GÓC KBA= GÓC BAM
LẠI CÓ EM//AB HAY HM//AB (E THUỘC HM)
=> GÓC BAM = GÓC AMH
=>GÓC KBA= GÓC AMH
XÉT T/G KBA VÀ T/G AMH (C-G-C)
=> GÓC KAB= GÓC AHM (2 GÓC TƯƠNG ỨNG)
TA THẤY:GÓC KAB+ GÓC BAM+ GÓC MAH= GÓC MAH+ GÓC AMH+ GÓC AHM (VÌ GÓC KAB= GÓC AHM, GÓC BAM= GÓC AMH)
=>GÓC KAB+ GÓC BAM+ GÓC MAH= 180 ĐỘ
HAY K,A,H THẲNG HÀNG
=> ĐPCM
nhớ tick cho mềnh đấy.
a, xét tam giác AHC và tam giác AHC có: AH chung
AB = AC do tam giác ABC cân tại A (gt)
góc AHB = góc AHC = 90
=> tam giác AHC = tam giác AHC (ch-cgv)
b, tam giác AHC = tam giác AHC (câu a)
=> CH = BH (đn)
xét tma giác BHN và tam giác CHM có: góc MHC = góc NHB (đối đỉnh)
HN = HM (gt)
=> tam giác BHN = tam giác CHM (c-g-c)
=> góc BNH = góc HMC (đn) mà 2 góc này slt
=> BN // AC (đl)
a, xét \(\Delta\)BMC và \(\Delta\)AMD có:
\(\widehat{DAM}\)=\(\widehat{MCB}\)(vì so le)
AM=MC(gt)
\(\widehat{AMD}\)=\(\widehat{CMB}\)(vì đối đỉnh)
\(\Rightarrow\)\(\Delta\)BMC=\(\Delta\)AMD(g.c.g)
b,xét tam giác AMB và tam giác CMD có:
AM=MC(gt)
\(\widehat{AMB}\)=\(\widehat{CMD}\)(Vì đối đỉnh)
MB=MD(t.giác BMC=t.giác AMD
=> t.giác AMB=t.giác CMD(c.g.c)
=>AB=CD
vì AB=AC(gt) màAB=CD=> AC=CD
=> t.giác ACD cân tại C
KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA
A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)
\(CI\perp AD\Rightarrow\widehat{CID}=90^o\)
\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> BH // CI (ĐPCM)
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)
XÉT \(\Delta AHB\)VUÔNG TẠI H
\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)
từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)
XÉT \(\Delta ABH\)VÀ\(\Delta CAI\)CÓ
\(\widehat{H}=\widehat{I}=90^o\)
AB = AC (gt)
\(\widehat{ABH}=\widehat{IAC}\)(CMT)
=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)
=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )
a: Xet ΔAMB vuông tại M và ΔAMC vuông tại M có
AB=AC
AM chung
=>ΔAMB=ΔAMC
b: I nằm trên trug trực của AB
nên IA=IB
=>ΔIAB cân tại I
em cảm ơn ạ:33