Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
a) xét 2 tam giác vuông ABH và ACK có:
góc BAC chung
AB = AC (gt)
góc ABH = góc ACK (cùng phụ vs góc ABC)
=> tam giác ABH = tam giác ACK (g.c.g)
b) tam giác ABH = tam giác ACK (câu a)
=> AK = AH mà AB = AC = AK + BK = AH + CH => BK = CH (1)
do AK = AH => tam giác AKH cân tại A => góc AKH = góc AHK = (1800 - góc BAC) : 2 (*)
ta có: góc ABC = góc ACB = (1800 - góc BAC ) : 2 (**)
từ (*) và (**) => góc ABC = góc AKH (đồng vị ) => BC // KH (2)
từ (1) và (2) => tứ giác BCHK là hình thang đều
t i c k nhé!! 3543645767658587687689698797808657568568
a) Mx đi qua trung điểm M của BC và song song với AC. Suy ra Mx đi qua trung điểm E của AB (theo Định lí 1).
Tương tự, ta được F cũng là trung điểm của AC. Khi đó EF trở thành đường trung bình của tam giác ABC;
b) Do ME và MF cũng là đường trung bình nên có ME = MF = AE = AF. Suy ra AM là đường trung trực của EF.