Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Giải:
Lấy P là trung điểm của BC, AP giao CD tại Q. Gọi N là trung điểm BD.
\(\Delta\)BDC có: P và N lần lượt là trung điểm của BC và BD => PN là đường trung bình \(\Delta\)BDC
=> PN // CD Hay PN // DQ.
\(\Delta\)NAP có: D là trung điểm AN (Dễ chứng minh); DQ // PN; Q thuộc AP
=> Q là trung điểm AP => AQ=PQ.
\(\Delta\)BHC có: P và M lần lượt là trung điểm của BC và CH => PM là đường trung bình \(\Delta\)BHC
=> PM // BH. Mà BH vuông góc HC => PM vuông góc HC (tại M) hay PM vuông góc CQ
\(\Delta\)ABC cân tại A có: P là trung điểm BC => AP vuông góc BC hay PQ vuông góc CP
Ta có: ^MPQ + ^MPC = ^CPQ = 900 .Mà ^MPC + ^MCP = 900 ( Do \(\Delta\)PMC vuông tại M)
=> ^MPQ = ^MCP => \(\Delta\)PMC ~ \(\Delta\)QMP (g.g) => \(\frac{MP}{MQ}=\frac{PC}{QP}\)
Lại có: AQ=PQ; PC=BP (cmt) => \(\frac{MP}{MQ}=\frac{BP}{AQ}\)
Góc AQM là góc ngoài \(\Delta\)CPQ => ^AQM = ^CPQ + ^C1 =900 + ^C1
Góc BPM là góc ngoài \(\Delta\)PMC => ^BPM = ^PMC + ^C1 = 900 + ^C1
Suy ra ^AQM = ^BPM
Xét \(\Delta\)MPB và \(\Delta\)MQA: ^BPM = ^AQM; \(\frac{BP}{AQ}=\frac{MP}{MQ}\)(cmt) => \(\Delta\)MPB ~ \(\Delta\)MQA (c.g.c)
=> ^BMP = ^AMQ. Mà ^BMP + ^BMD = 900 (PM vuông góc CD) => ^AMQ + ^BMD = 900
=> ^AMB = 900 => AM vuông góc với BM (đpcm).
a: Xét tứ giác ADBK có
M là trung điểm chung của AB và DK
=>ADBK là hình bình hành
=>AK=DB
mà DB=AC(ABCD là hình chữ nhật)
nên AK=AC
=>ΔAKC cân tại A
b: Xét ΔIAM có IE là phân giác
nên \(\dfrac{ME}{EA}=\dfrac{IM}{IA}\)
mà IA=IK
nên \(\dfrac{ME}{EA}=\dfrac{IM}{IK}\)
Xét ΔIMK có IF là phân giác
nên \(\dfrac{IM}{IK}=\dfrac{MF}{FK}\)
=>\(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
nên EF//AK
Ta có: EF//AK
AK//BD(AKBD là hình bình hành)
Do đó: EF//BD
Gọi K là trung điểm của BD
Xét ΔDBH có
K,I lần lượt là trung điểm của DB,DH
=>KI là đường trung bình của ΔDBH
=>KI//BH
Ta có: KI//BH
AH\(\perp\)BH
Do đó: KI\(\perp\)AH
Xét ΔAKH có
KI,HD là các đường cao
KI cắt HD tại I
Do đó: I là trực tâm
=>AI\(\perp\)HK
Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔBDC có
K,H lần lượt là trung điểm của BD,BC
=>KH là đường trung bình
=>KH//DC
Ta có: KH//DC
AI\(\perp\)KH
Do đó: AI\(\perp\)DC
mình trả lời trước câu b:
Bạn c/m tam giác AHM = tam giác DHM (ccc) => HM là p/g góc AHD => góc AHM =1/2.(góc AHD) = 90/2 =45
b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Do đó: ΔADE\(\sim\)ΔACB
Suy ra: \(\widehat{ADE}=\widehat{ACB}\)
Gọi \(AE\) là đường cao của \(\Delta ABC\)và CD∩AE=F
\(\Delta CBH\) có E,M lần lượt là trung điểm \(CB,CH\)
\(\Rightarrow EM//BH\)
\(\Rightarrow EM\perp DC\)
Áp dụng định lí Menelaus cho tam giác ABE với cát tuyến CFD ta được:
\(\frac{AD}{BD}.\frac{BC}{EC}.\frac{EF}{AF}=1\)
\(\Leftrightarrow FA=FE\)
\(\Delta CEF\)vuông tại \(E\) có đường cao \(EM\)
\(\Rightarrow\hept{\begin{cases}\widehat{MFE}=\widehat{MEC}\Rightarrow\widehat{MFA}=\widehat{MEB}\\\frac{ME}{MF}=\frac{EC}{EF}=\frac{EB}{FA}\end{cases}}\)
\(\Delta MEB\)và \(\Delta MFA\)có:
\(\hept{\begin{cases}\widehat{MFA}=\widehat{MEB\left(cmt\right)}\\\frac{ME}{MF}=\frac{EB}{FA}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta MEB\)đồng dạng \(\Delta MFA\)
\(\Rightarrow\widehat{FMA}=\widehat{EMA}\)
\(\widehat{AMB}=\widehat{DMB}+\widehat{AMF}=\widehat{DMB}+\widehat{BME}=90^0\)
\(\Rightarrow MB\perp MA\)
hay \(\widehat{ANB}=90^0\left(ĐPCM\right)\)